Semiconductors

, Volume 52, Issue 6, pp 739–744 | Cite as

Quantum Oscillations of Photoconductivity Relaxation in pin GaAs/InAs/AlAs Heterodiodes

Semiconductor Structures, Low-Dimensional Systems, and Quantum Phenomena

Abstract

The photoconductivity and its relaxation characteristics in tunneling pin GaAs/AlAs heterostructures under pulsed illumination is studied. Quantum oscillations in the photoconductivity are detected depending on the bias voltage with the period independent of the light wavelength, as well as an oscillating component of the relaxation curves caused by modulation of the recombination rate at the edge of a triangular quantum well in the undoped i layer, as in the case of photoconductivity oscillations. The common nature of oscillations of the steady-state photoconductivity and relaxation curves under pulsed illumination is directly confirmed by the lack of an oscillating component in both types of dependences of some studied p–i–n heterostructures. Simultaneous suppression of the observed oscillations of dependences of both types as the temperature increases to 80 K also confirms the proposed mechanism of their formation. The dependences of these oscillations on the magnetic field and light flux power are studied. Oscillation-amplitude suppression in a magnetic field of ~2 T perpendicular to the current is caused by the effect of the Lorentz force on the ballistic motion of carriers in the triangular-quantum-well region.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. C. Blakesley, P. See, A. J. Shields, B. E. Kardynal, P. Atkinson, I. Farrer, and D. A. Ritchie, Phys. Rev. Lett. 94, 067401 (2005).ADSCrossRefGoogle Scholar
  2. 2.
    O. Makarovsky, E. E. Vdovin, A. Patané, L. Eaves, M. N. Makhonin, A. I. Tartakovskii, and M. Hopkinson, Phys. Rev. Lett. 108, 117402 (2012).ADSCrossRefGoogle Scholar
  3. 3.
    Q. C. Weng, Z. H. An, D. Y. Xiong, B. Zhang, P. P. Chen, T. X. Li, Z. O. Zhu, and W. Lu, Appl. Phys. Lett. 105, 031114 (2014).ADSCrossRefGoogle Scholar
  4. 4.
    Wangping Wang, Ying Hou, Dayuan Xoing, Ning Li, Wei Lu, Wenxing Wang, Hong Chen, Junming Zhou, and E. Wu, and Heping Zengless, Appl. Phys. Lett. 92, 023508 (2008).ADSCrossRefGoogle Scholar
  5. 5.
    T. W. Hickmott, P. M. Solomon, F. F. Fang, F. Stern, R. Fischer, and H. Morkoç, Phys. Rev. Lett. 52, 2053 (1984).ADSCrossRefGoogle Scholar
  6. 6.
    M. Alikacem, D. K. Maude, L. Eaves, M. Henini, G. Hill, and M. A. Pate, Appl. Phys. Lett. 59, 3124 (1991).ADSCrossRefGoogle Scholar
  7. 7.
    M. L. Leadbeater, E. S. Alves, L. Eaves, M. Henini, O. H. Hughes, A. Celeste, J. C. Portal, G. Hill, and M. A. Pate, J. Phys.: Condens. Matter 1, 4865 (1989).ADSGoogle Scholar
  8. 8.
    T. M. Fromhold, L. Eaves, F. W. Sheard, M. L. Leadbeater, T. J. Foster, and P. C. Main, Phys. Rev. Lett. 72, 2608 (1994).ADSCrossRefGoogle Scholar
  9. 9.
    V. L. Al’perovich, N. T. Moshegov, B. A. Tkachenko, O. A. Tkachenko, A. I. Toropov, and A. C. Yaroshevich, JETP Lett. 70, 117 (1999).ADSCrossRefGoogle Scholar
  10. 10.
    Yu. N. Khanin, E. E. Vdovin, O. Makarovskii, and M. Khenini, JETP Lett. 102, 720 (2015).ADSCrossRefGoogle Scholar
  11. 11.
    J. Gowar, Optical Communication Systems (Prentice Hall, NJ, 1984).Google Scholar
  12. 12.
    V. V. Vainberg, V. M. Vasetskii, Yu. N. Gudenko, V. N. Poroshin, N. V. Baidus, and B. N. Zvonkov, Semiconductors 46, 174 (2012)Google Scholar
  13. 12a.
    S. V. Morozov, M. S. Joludev, A. V. Antonov, V. V. Rumyantsev, V. I. Gavrilenko, V. Ya. Aleshkin, A. A. Dubinov, N. N. Mikhailov, S. A. Dvoretsky, O. Drachenko, S. Winnerl, H. Schneider, and M. Helm, Semiconductors 46, 1362 (2012).ADSCrossRefGoogle Scholar
  14. 13.
    S. Winnerl, M. Orlita, P. Plochocka, P. Kossacki, M. Potemski, T. Winzer, E. Malic, A. Knorr, M. Sprinkle, C. Berger, W. A. de Heer, H. Schneider, and M. Helm, Phys. Rev. Lett. 107, 237401 (2011).ADSCrossRefGoogle Scholar
  15. 14.
    E. E. Vdovin, M. Ashdown, A. Patane, L. Eaves, R. P. Campion, Yu. N. Khanin, M. Henini, and O. Makarovsky, Phys. Rev. B 89, 205305 (2014).ADSCrossRefGoogle Scholar
  16. 15.
    G. Kieβlich, A. Wacker, E. Schöll, S. A. Vitusevich, A. E. Belyaev, S. V, Danylyuk, A. Förster, N. Klein, and M. Henini, Phys. Rev. B 68, 125331 (2003).ADSCrossRefGoogle Scholar
  17. 16.
    A. E. Belyaev, A. Patane, L. Eaves, P. C. Main, M. Henini, and S. V. Danylyuk, Nanotechnology 12, 515 (2001).ADSCrossRefGoogle Scholar
  18. 17.
    A. E. Belyaev, S. A. Vitusevich, L. Eaves, P. C. Main, M. Henini, A. Forster, W. Reetz, and S. V. Danylyuk, Nanotechnology 13, 94 (2002).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Institute of Microelectronics Technology and High-Purity MaterialsRussian Academy of SciencesChernogolovka, Moscow oblastRussia

Personalised recommendations