, Volume 52, Issue 6, pp 783–788 | Cite as

Model for Charge Accumulation in n- and p-MOS Transistors during Tunneling Electron Injection from a Gate

  • O. V. Aleksandrov
  • S. A. Mokrushina
Physics of Semiconductor Devices


A quantitative model for charge accumulation in an undergate dielectric during tunneling electron injection from a gate according to the Fowler–Nordheim mechanism is developed. The model takes into account electron and hole capture at hydrogen-free and hydrogen-related traps as well as the generation of surface states during the interaction of holes with hydrogen-related centers. The experimental dependences of the threshold voltage shift and gate voltage shift of n- and p-channel MOS (metal–oxide–semiconductor) transistors on the injected charge in the constant current mode are analyzed based on the model.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. P. Baraban, V. V. Bulavinov, and P. P. Konorov, Electronics of SiO2 Layers on Silicon (Leningr. Gos. Univ., Leningrad, 1988) [in Russian].Google Scholar
  2. 2.
    O. V. Aleksandrov, Semiconductors 51, 1062 (2017).ADSCrossRefGoogle Scholar
  3. 3.
    F. J. Feigl, D. R. Young, D. J. DiMaria, S. Lai, and J. Calise, J. Appl. Phys. 52, 5665 (1981).ADSCrossRefGoogle Scholar
  4. 4.
    A. M. Emel’yanov, Phys. Solid State 52, 1131 (2010).ADSCrossRefGoogle Scholar
  5. 5.
    Y. Nissan-Cohen, J. Shappir, and D. Frohman-Bentchkowsky, J. Appl. Phys. 54, 5793 (1983).ADSCrossRefGoogle Scholar
  6. 6.
    N. Klein and P. Solomon, J. Appl. Phys. 47, 4364 (1976).ADSCrossRefGoogle Scholar
  7. 7.
    Y. Nissan-Cohen, J. Shappir, and D. Frohman-Bentchkowsky, J. Appl. Phys. 58, 2252 (1985).ADSCrossRefGoogle Scholar
  8. 8.
    C.-F. Chen and C.-Y. Wu, J. Appl. Phys. 60, 3926 (1986).ADSCrossRefGoogle Scholar
  9. 9.
    P. Fazan, M. Dutoit, C. Martin, and M. Ilegems, Solid State Electron. 30, 829 (1987).ADSCrossRefGoogle Scholar
  10. 10.
    P. Samanta and C. K. Sarkar, J. Appl. Phys. 83, 2662 (1998).ADSCrossRefGoogle Scholar
  11. 11.
    M. Knoll, D. Bräunig, and W. R. Fahrner, J. Appl. Phys. 53, 6946 (1982).ADSCrossRefGoogle Scholar
  12. 12.
    V. V. Andreev, V. G. Baryshev, G. G. Bondarenko, A. A. Stolyarov, and V. A. Shakhnov, Mikroelektronika 26, 440 (1997).Google Scholar
  13. 13.
    V. V. Afanas’ev, G. J. Adriaenssens, and A. Stesmans, Microelectron. Eng. 59, 85 (2001).CrossRefGoogle Scholar
  14. 14.
    M. V. Fischetti, Phys. Rev. B 31, 2099 (1985).ADSCrossRefGoogle Scholar
  15. 15.
    D. J. DiMaria, E. Cartier, and D. A. Buchanan, J. Appl. Phys. 80, 304 (1996).ADSCrossRefGoogle Scholar
  16. 16.
    S. K. Lai, Appl. Phys. Lett. 39, 58 (1981).ADSCrossRefGoogle Scholar
  17. 17.
    D. J. DiMaria, E. Cartier, and D. Arnold, J. Appl. Phys. 73, 3367 (1993).ADSCrossRefGoogle Scholar
  18. 18.
    Q. D. M. Khosru, N. Yasuda, K. Taniguchi, and C. Hamaguchi, J. Appl. Phys. 77, 4494 (1995).ADSCrossRefGoogle Scholar
  19. 19.
    G. V. Gadiyak, Semiconductors 31, 207 (1997).ADSCrossRefGoogle Scholar
  20. 20.
    A. V. Schwerin, M. M. Heyns, and W. Weber, J. Appl. Phys. 67, 7595 (1990).ADSCrossRefGoogle Scholar
  21. 21.
    D. A. Buchanan and D. J. DiMaria, J. Appl. Phys. 67, 7439 (1990).ADSCrossRefGoogle Scholar
  22. 22.
    M. Lenzlinger and E. H. Snow, J. Appl. Phys. 40, 278 (1969).ADSCrossRefGoogle Scholar
  23. 23.
    P. Samanta and C. K. Sarkar, Solid State Electron. 46, 279 (2002).ADSCrossRefGoogle Scholar
  24. 24.
    O. V. Aleksandrov, Semiconductors 48, 505 (2014); 49, 793 (2015).ADSCrossRefGoogle Scholar
  25. 25.
    E. Cartier, J. H. Stathis, and D. A. Buchanan, Appl. Phys. Lett. 63, 1510 (1993).ADSCrossRefGoogle Scholar
  26. 26.
    X. Gao and S. S. Yee, IEEE Trans. Electron. Dev. 41, 1819 (1994).ADSCrossRefGoogle Scholar
  27. 27.
    Q. D. M. Khosru, N. Yasuda, K. Taniguchi, and C. Hamaguchi, J. Appl. Phys. 76, 4738 (1994).ADSCrossRefGoogle Scholar
  28. 28.
    L. Do Thanh, M. Aslam, and P. Balk, Solid State Electron. 29, 829 (1986).ADSCrossRefGoogle Scholar
  29. 29.
    R. J. Krantz, L. W. Aukerman, and T. C. Zietlow, IEEE Trans. Nucl. Sci. 34, 1196 (1987).ADSCrossRefGoogle Scholar
  30. 30.
    J. J. Tzou, J. Y.-C. Sun, and C.-T. Sah, Appl. Phys. Lett. 43, 861 (1983).ADSCrossRefGoogle Scholar
  31. 31.
    H. E. Boesch, F. B. McLean, J. M. Benedetto, and J. M. McGarrity, IEEE Trans. Nucl. Sci. 33, 1191 (1986).ADSCrossRefGoogle Scholar
  32. 32.
    I. P. Mikhailovskii, P. B. Potapov, and A. E. Epov, Phys. Status Solidi A 94, 679 (1986).ADSCrossRefGoogle Scholar
  33. 33.
    V. S. Soldatov, N. V. Sobolev, I. B. Varlashov, V. A. Kolyada, and A. G. Voevodin, Izv. Vyssh. Uchebn. Zaved., Fiz., No. 12, 82 (1989).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.St. Petersburg State Electrotechnical University “LETI”St. PetersburgRussia

Personalised recommendations