Semiconductors

, Volume 52, Issue 5, pp 565–571 | Cite as

The Impact of the Substrate Material on the Optical Properties of 2D WSe2 Monolayers

  • L. M. Schneider
  • S. Lippert
  • J. Kuhnert
  • D. Renaud
  • K. N. Kang
  • O. Ajayi
  • M.-U. Halbich
  • O. M. Abdulmunem
  • X. Lin
  • K. Hassoon
  • S. Edalati-Boostan
  • Y. D. Kim
  • W. Heimbrodt
  • E. H. Yang
  • J. C. Hone
  • A. Rahimi-Iman
XXV International Symposium “Nanostructures: Physics and Technology”, Saint Petersburg, Russia, June 26–30, 2017. Excitons in Nanostructures

Abstract

2D-materials, especially transition metal dichalcogenides (TMDs) have drawn a lot of attention due to their remarkable characteristics rendering them a promising candidate for optical applications. While the basic properties are understood up to now, the influence of the environment has not been studied in detail, yet. Here we highlight a systematic comparison of the optical properties of tungsten diselenide monolayers on different substrates. Subtle changes in the emission spectrum and Raman signature have been found as well as surprisingly pronounced differences in the pump-power-dependent and time-resolved output at higher excitation densities. For all samples, exciton–exciton annihilation can be obtained. Nevertheless an analysis of different pump-dependent decay rates suggests substrate-dependent changes in the diffusion constant as well as exciton Bohr radius.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, Phys. Rev. Lett. 105, 136805 (2010). doi 10.1103/Phys-RevLett.105.136805ADSCrossRefGoogle Scholar
  2. 2.
    G. Wang, A. Chernikov, M. M. Glazov, T. F. Heinz, X. Marie, T. Amand, and B. Urbaszek, arXiv:1707.05863 (2017).Google Scholar
  3. 3.
    L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y. J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. C. Neto, and K. S. Novoselov, Science (Washington, DC, U. S.) 340 (6138), 1311 (2013). doi 10.1126/science.1235547ADSCrossRefGoogle Scholar
  4. 4.
    B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Nat. Nanotechnol. 6, 147 (2011). doi 10.1038/nnano.2010.279ADSCrossRefGoogle Scholar
  5. 5.
    S. Das, M. Dubey, and A. Roelofs, Appl. Phys. Lett. 105, 083511 (2014). doi 10.1063/1.4894426ADSCrossRefGoogle Scholar
  6. 6.
    F. Withers, O. del Pozo-Zamudio, S. Schwarz, S. Dufferwiel, P. M. Walker, T. Godde, A. P. Rooney, A. Gholinia, C. R. Woods, P. Blake, S. J. Haigh, K. Watanabe, T. Taniguchi, I. L. Aleiner, A. K. Geim, V. I. Fal’ko, A. I. Tartakovskii, and K. S. Novoselov, Nano Lett. 15, 8223 (2015). doi 10.1021/acs.nanolett. 5b03740ADSCrossRefGoogle Scholar
  7. 7.
    H. Li, J. Wu, Z. Yin, and H. Zhang, Accounts Chem. Res. 47, 1067 (2014). doi 10.1021/ar4002312CrossRefGoogle Scholar
  8. 8.
    E. Cappelluti, R. Roldán, J. A. Silva-Guillén, P. Ordejón, and F. Guinea, Phys. Rev. B 88, 075409 (2013). doi 10.1103/PhysRevB.88.075409ADSCrossRefGoogle Scholar
  9. 9.
    A. Chernikov, T. C. Berkelbach, H. M. Hill, A. Rigosi, Y. Li, O. B. Aslan, D. R. Reichman, M. S. Hybertsen, and T. F. Heinz, Phys. Rev. Lett. 113, 076802 (2014). doi 10.1103/PhysRevLett.113.076802ADSCrossRefGoogle Scholar
  10. 10.
    Y. You, X. X. Zhang, T. C. Berkelbach, M. S. Hybertsen, D. R. Reichman, and T. F. Heinz, Nat. Phys. 11, 477 (2015). doi 10.1038/nphys3324CrossRefGoogle Scholar
  11. 11.
    M. Danovich, V. Zólyomi, and V. I. Fal’ko, Sci. Rep. 7, 45998 (2017). doi 10.1038/srep45998ADSCrossRefGoogle Scholar
  12. 12.
    K. Hao, J. F. Specht, P. Nagler, L. Xu, K. Tran, A. Singh, C. K. Dass, C. Schüller, T. Korn, M. Richter, A. Knorr, X. Li, and G. Moody, Nat. Commun. 8, 15552 (2017). doi 10.1038/ncomms15552ADSCrossRefGoogle Scholar
  13. 13.
    Y. Yu, Y. Yu, C. Xu, A. Barrette, K. Gundogdu, and L. Cao, Phys. Rev. B 93, 201111 (2016). doi 10.1103/PhysRevB.93.201111ADSCrossRefGoogle Scholar
  14. 14.
    L. Yuan and L. Huang, Nanoscale 7, 7402 (2015). doi 10.1039/C5NR00383KADSCrossRefGoogle Scholar
  15. 15.
    S. Lippert, L. M. Schneider, D. Renaud, K. N. Kang, O. Ajayi, J. Kuhnert, M. U. Halbich, O. M. Abdulmunem, X. Lin, K. Hassoon, S. Edalati-Boostan, Y. D. Kim, W. Heimbrodt, E. H. Yang, J. C. Hone, and A. Rahimi-Iman, 2D Mater. 4, 025045 (2017). doi 10.1088/2053-1583/aa5b21CrossRefGoogle Scholar
  16. 16.
    D. Sun, Y. Rao, G. A. Reider, G. Chen, Y. You, L. Brézin, A. R. Harutyunyan, and T. F. Heinz, Nano Lett. 14, 5625 (2014). doi 10.1021/nl5021975ADSCrossRefGoogle Scholar
  17. 17.
    N. Kumar, Q. Cui, F. Ceballos, D. He, Y. Wang, and H. Zhao, Phys. Rev. B 89, 125427 (2014). doi 10.1103/PhysRevB.89.125427ADSCrossRefGoogle Scholar
  18. 18.
    A. Chernikov, C. Ruppert, H. M. Hill, A. F. Rigosi, and T. F. Heinz, Nat. Photon. 9, 466 (2015). doi 10.1038/nphoton.2015.104ADSCrossRefGoogle Scholar
  19. 19.
    A. F. Rigosi, H. M. Hill, Y. Li, A. Chernikov, and T. F. Heinz, Nano Lett. 15, 5033 (2015). doi 10.1021/acs.nanolett.5b01055ADSCrossRefGoogle Scholar
  20. 20.
    Y. Lin, X. Ling, L. Yu, S. Huang, A. L. Hsu, Y. H. Lee, J. Kong, M. S. Dresselhaus, and T. Palacios, Nano Lett. 14, 5569 (2014). doi 10.1021/nl501988yADSCrossRefGoogle Scholar
  21. 21.
    Y. Yu, Y. Yu, C. Xu, Y. Q. Cai, L. Su, Y. W. Zhang, Y.W. Zhang, K. Gundogdu, and L. Cao, Adv. Funct. Mater. 26, 4733 (2016). doi 10.1002/adfm.201600418CrossRefGoogle Scholar
  22. 22.
    A. V. Stier, N. P. Wilson, G. Clark, X. Xu, and S. A. Crooker, Nano Lett. 16, 7054 (2016). doi 10.1021/acs.nanolett.6b03276ADSCrossRefGoogle Scholar
  23. 23.
    L. M. Schneider, S. Lippert, J. Kuhnert, O. Ajayi, D. Renaud, S. Firoozabadi, Q. Ngo, R. Guo, Y. D. Kim, W. Heimbrodt, J. C. Hone, and A. Rahimi-Iman, Nano-Struct. Nano-Objects (2017). doi 10.1016/j.nanoso.2017.08.009Google Scholar
  24. 24.
    T. Godde, D. Schmidt, J. Schmutzler, M. Aßmann, J. Debus, F. Withers, E. M. Alexeev, O. del Pozo-Zamudio, O. V. Skrypka, K. S. Novoselov, M. Bayer, and A. I. Tartakovskii, Phys. Rev. B 94, 165301 (2016). doi 10.1103/PhysRevB.94.165301ADSCrossRefGoogle Scholar
  25. 25.
    J. Huang, T. B. Hoang, and M. H. Mikkelsen, Sci. Rep. 6, 22414 (2016). doi 10.1038/srep22414ADSCrossRefGoogle Scholar
  26. 26.
    H. Sahin, S. Tongay, S. Horzum, W. Fan, J. Zhou, J. Li, J. Wu, and F. M. Peeters, Phys. Rev. B 87, 165409 (2013). doi 10.1103/PhysRevB.87.165409ADSCrossRefGoogle Scholar
  27. 27.
    B. Amin, T. P. Kaloni, and U. Schwingenschlögl, RSC Adv. 4, 34561 (2014). doi 10.1039/C4RA06378CCrossRefGoogle Scholar
  28. 28.
    C. Klingshirn, Semiconductor Optics (Springer, Berlin, Heidelberg, 2007). doi 10.1007/978-3-540-38347-5CrossRefGoogle Scholar
  29. 29.
    von K. Rottkay, T. Richardson, M. Rubin, and J. Slack, in Optical Materials Technology for Energy Efficiency and Solar Energy Conversion XV, Proc. SPIE 3138, 9 (1997).ADSCrossRefGoogle Scholar
  30. 30.
    A. Steinhoff, J. H. Kim, F. Jahnke, M. Rösner, D. S. Kim, C. Lee, G. H. Han, M. S. Jeong, T. O. Wehling, and C. Gies, Nano Lett. 15, 6841 (2015). doi 10.1021/acs.nanolett.5b02719ADSCrossRefGoogle Scholar
  31. 31.
    S. Mouri, Y. Miyauchi, M. Toh, W. Zhao, G. Eda, and K. Matsuda, Phys. Rev. B 90, 155449 (2014). doi 10.1103/PhysRevB.90.155449ADSCrossRefGoogle Scholar
  32. 32.
    C. Daniel, L. M. Herz, C. Silva, F. J. M. Hoeben, P. Jonkheijm, A. P. H. J. Schenning, and E. W. Meijer, Phys. Rev. B 68, 235212 (2003). doi 10.1103/Phys-RevB.68.235212ADSCrossRefGoogle Scholar
  33. 33.
    A. Suna, Phys. Rev. B 1, 1716 (1970). doi 10.1103/PhysRevB.1.1716ADSCrossRefGoogle Scholar
  34. 34.
    K. D. Park, O. Khatib, V. Kravtsov, G. Clark, X. Xu, and M. B. Raschke, Nano Lett. 16, 2621 (2016). doi 10.1021/acs.nanolett.6b00238ADSCrossRefGoogle Scholar
  35. 35.
    A. M. van der Zande, P. Y. Huang, D. A. Chenet, T.C. Berkelbach, Y. You, G. H. Lee, T. F. Heinz, D. R. Reichman, D. A. Muller, and J. C. Hone, Nat. Mater. 12, 554 (2013). doi 10.1038/nmat3633ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • L. M. Schneider
    • 1
  • S. Lippert
    • 1
  • J. Kuhnert
    • 1
  • D. Renaud
    • 1
  • K. N. Kang
    • 2
  • O. Ajayi
    • 3
  • M.-U. Halbich
    • 1
  • O. M. Abdulmunem
    • 1
  • X. Lin
    • 1
  • K. Hassoon
    • 1
  • S. Edalati-Boostan
    • 1
  • Y. D. Kim
    • 3
  • W. Heimbrodt
    • 1
  • E. H. Yang
    • 2
  • J. C. Hone
    • 3
  • A. Rahimi-Iman
    • 1
  1. 1.Department of Physics and Materials Sciences CenterPhilipps-UniversitätMarburgGermany
  2. 2.Department of Mechanical EngineeringStevens Institute of TechnologyHobokenUSA
  3. 3.Department of Mechanical EngineeringColumbia UniversityNew YorkUSA

Personalised recommendations