, Volume 52, Issue 5, pp 645–650 | Cite as

Nanoparticle Formation in Zn+ and O+ Ion Sequentially Implanted SiO2 Film

  • V. V. Privezentsev
  • A. V. Makunin
  • A. A. Batrakov
  • S. V. Ksenich
  • A. V. Goryachev
XXV International Symposium “Nanostructures: Physics and Technology”, Saint Petersburg, Russia, June 26–30, 2017. Nanostructure Technology


The 64Zn+ and 16O+ ions were implanted in SiO2 film on Si substrate with next parameters: the implant dose was 5.0 × 1016 cm–2, for Zn+ ions the energy was 50 keV and for O+ ions the energy was 16 keV. Than the samples were subjected to isochronally during 1h annealing in N2 atmosphere in temperature range 400–600°C and than in Ar atmosphere in temperature range from 700 up to 1000°C with a step of 100°C. After annealing the samples surface is structured and its roughness increases due to nanoparticle formation in subsurface layer. In as implanted and in annealed samples on its surface and in its body the Zn-contained nanoparticles with a size about 100 nm were formed. These nanoparticles consist presumably from Zn phase after implantation and from ZnO phase after annealing.


  1. 1.
    M. I. Baraton, Synthesis, Functionalization, and Surface Treatment of Nanoparticles (and Am. Sci., Los Angeles, 2002).Google Scholar
  2. 2.
    S.-P. Chang and K.-J. Chen, J. Nanomater. 2012, 602398 (2012).Google Scholar
  3. 3.
    C. Jiang, X. Sun, G. Lo, et al., Appl. Phys. Lett. 90, 263501 (2007).CrossRefADSGoogle Scholar
  4. 4.
    C. Li, Y. Yang, X. Sun, et al., Nanotechnology 18, 135604 (2007).CrossRefADSGoogle Scholar
  5. 5.
    S. Chu, M. Olmedo, Zh. Yang, et al., Appl. Phys. Lett. 93, 181106 (2008).CrossRefADSGoogle Scholar
  6. 6.
    G. P. Smestad and M. Gratzel, J. Chem. Educ. 75, 752 (1998).CrossRefGoogle Scholar
  7. 7.
    B. B. Straumal, A. A. Mazilkin, S. G. Protasova, et al., Phys. Rev. B 79, 205206 (2009).CrossRefADSGoogle Scholar
  8. 8.
    Ch. Li, G. Beirne, G. Kamita, et al., J. Appl. Phys. 116, 114501 (2014).CrossRefADSGoogle Scholar
  9. 9.
    I. Muntele, P. Thevenard, C. Muntele, et al., Mater. Res. Symp. Proc. 829, B.2.21 (2005).Google Scholar
  10. 10.
    C. Liu, H. Zhao, Y. Shen, et al., Nucl. Instrum. Methods Phys. Res., Sect. B 326, 23 (2014).CrossRefADSGoogle Scholar
  11. 11.
    V. Privezentsev, V. Kulikauskas, A. Bazhenov, and E. Steinman, Phys. Status Solidi C 10, 48 (2013).CrossRefADSGoogle Scholar
  12. 12.
    V. V. Privezentsev, A. V. Makunin, A. A. Batrakov, and S. V. Ksenich, in Proceedings of the 25th International Symposium on Nanostructures: Physics and Technology (SPb Univ., St. Petersburg, 2017), p. 282.Google Scholar
  13. 13.
    J. F. Ziegler and J. P. Biersack, SRIM 2008. Scholar
  14. 14.
    Handbook of XPS, Ed. by G. E. Muilenberg (Perkin-Elmer, Eden Prairie, MN, 1979), p.84.Google Scholar
  15. 15.
    NIST X-ray Photoelectron Spectroscopy Database. Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • V. V. Privezentsev
    • 1
  • A. V. Makunin
    • 2
  • A. A. Batrakov
    • 3
  • S. V. Ksenich
    • 4
  • A. V. Goryachev
    • 5
  1. 1.Institute of Physics and TechnologyRussian Academy of SciencesMoscowRussia
  2. 2.Skobeltsyn Institute of Nuclear PhysicsMoscow State UniversityMoscowRussia
  3. 3.National Research University “MPEI”MoscowRussia
  4. 4.National Research University “MISiS”MoscowRussia
  5. 5.National Research University “MIET”Zelenograd, MoscowRussia

Personalised recommendations