Semiconductors

, Volume 52, Issue 5, pp 639–644 | Cite as

Сoncentric GaAs Nanorings Growth Modelling

  • A. G. Nastovjak
  • I. G. Neizvestny
  • M. A. Vasilenko
  • N. L. Shwartz
XXV International Symposium “Nanostructures: Physics and Technology”, Saint Petersburg, Russia, June 26–30, 2017. Nanostructure Technology

Abstract

The nanostructures formation process using the droplet epitaxy technique was investigated by Monte Carlo simulation. The simulation was fulfilled for two-dimensional and three-dimensional geometry substrates. The nanostructures morphology dependence on the growth temperature was presented. Crystal clusters, single and double rings were observed. The nanostructures shape was shown to be determined by the gallium diffusion length. The conditions of double rings formation during the droplet epitaxy were considered using analytical and numerical approaches. The factors that determine the rings location and shape were analyzed. The growth morphology was demonstrated to be dependent on the initial distance L between the droplets. The double ring formation was possible at a low droplet density only, when the As-stabilized region could be created between the droplets.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Wu, Zh. M. Wang, V. G. Dorogan, Sh. Li, Zh. Zhou, H. Li, J. Lee, E. S. Kim, Yu. I. Mazur, and G. J. Salamo, Appl. Phys. Lett. 101, 043904 (2012).CrossRefADSGoogle Scholar
  2. 2.
    T. Mano, T. Kuroda, M. Yamagiwa, G. Kido, K. Sakoda, and N. Koguchi, Appl. Phys. Lett. 89, 183102 (2006).CrossRefADSGoogle Scholar
  3. 3.
    T. Kuroda, T. Mano, T. Ochiai, S. Sanguinetti, K. Sakoda, G. Kido, and N. Koguchi, Phys. Rev. B 72, 205301 (2005).CrossRefADSGoogle Scholar
  4. 4.
    J. Wu, Z. Li, D. Shao, M. O. Manasreh, V. P. Kunets, Z. M. Wang, G. J. Salamo, and B. D. Weaver, Appl. Phys. Lett. 94, 171102 (2009).CrossRefADSGoogle Scholar
  5. 5.
    M. Hanke, Yu. I. Mazur, E. Marega, Z. Y. AbuWaar, G. J. Salamo, P. Schäfer, and M. Schmidbauer, Appl. Phys. Lett. 91, 043103 (2007).CrossRefADSGoogle Scholar
  6. 6.
    C. Somaschini, S. Bietti, N. Koguchi, and S. Sanguinetti, Nano Lett. 9, 3419 (2009).CrossRefADSGoogle Scholar
  7. 7.
    T. Mano, T. Kuroda, S. Sanguinetti, T. Ochiai, T. Tateno, J. Kim, T. Noda, M. Kawabe, K. Sakoda, G. Kido, and N. Koguchi, Nano Lett. 5, 425 (2005).CrossRefADSGoogle Scholar
  8. 8.
    Z. Gong, Z. C. Niu, S. S. Huang, Z. D. Fang, B. Q. Sun, and J. B. Xia, Appl. Phys. Lett. 87, 093116 (2005).CrossRefADSGoogle Scholar
  9. 9.
    D. Fuster, K. Abderrafi, B. Alen, Y. González, L. Wewior, and L. González, J. Cryst. Growth 434, 81 (2016).CrossRefADSGoogle Scholar
  10. 10.
    K. Reyes, P. Smereka, D. Nothern, J. M. Millunchick, S. Bietti, C. Somaschini, S. Sanguinetti, and C. Frigeri, Phys. Rev. B 87, 165406 (2013).CrossRefADSGoogle Scholar
  11. 11.
    C. Somaschini, S. Bietti, N. Koguchi, and S. Sanguinetti, Nano Lett. 9, 3419 (2009).CrossRefADSGoogle Scholar
  12. 12.
    X. L. Li and G. W. Yang, J. Phys. Chem. C 112, 7693 (2008).CrossRefGoogle Scholar
  13. 13.
    M. A. Vasilenko, I. G. Neizvestny, and N. L. Shwartz, Comput. Mater. Sci. 102, 286 (2015).CrossRefGoogle Scholar
  14. 14.
    M. A. Vasilenko, A. G. Nastovjyak, I. G. Neizvestny, and N. L. Shwartz, Optoelectron. Instrum. Data Proces. 52, 508 (2016).CrossRefGoogle Scholar
  15. 15.
    A. V. Zverev, C. Yu. Zinchenko, N. L. Shwartz, and Z. Sh. Yanovitskaya, Nanotechnol. Russ. 4, 215 (2009).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. G. Nastovjak
    • 1
  • I. G. Neizvestny
    • 1
    • 2
  • M. A. Vasilenko
    • 1
  • N. L. Shwartz
    • 1
    • 2
  1. 1.Rzhanov Institute of Semiconductor Physics, Siberian BranchRussian Academy of SciencesNovosibirsk 90Russia
  2. 2.Novosibirsk State Technical UniversityNovosibirskRussia

Personalised recommendations