, Volume 52, Issue 5, pp 593–596 | Cite as

Composition and Band Structure of the Native Oxide Nanolayer on the Ion Beam Treated Surface of the GaAs Wafer

  • V. M. Mikoushkin
  • V. V. Bryzgalov
  • S. Yu. Nikonov
  • A. P. Solonitsyna
  • D. E. Marchenko
XXV International Symposium “Nanostructures: Physics and Technology”, Saint Petersburg, Russia, June 26–30, 2017. Nanostructure Characterization


Detailed information on GaAs oxide properties is important for solving the problem of passivating and dielectric layers in the GaAs-based electronics. The elemental and chemical compositions of the native oxide layer grown on the atomically clean surface of an n-GaAs (100) wafer etched by Ar+ ions have been studied by synchrotron-based photoelectron spectroscopy. It has been revealed that the oxide layer is essentially enriched in the Ga2O3 phase which is known to be a quite good dielectric as compared to As2O3. The gallium to arsenic ratio reaches the value as high as [Ga]/[As] = 1.5 in the course of oxidation. The Ga-enrichment occurs supposedly due to diffusion away of As released in preferential oxidation of Ga atoms. A band diagram was constructed for the native oxide nanolayer on the n-GaAs wafer. It has been shown that this natural nanostructure has features of a p–n heterojunction.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. G. Baca and C. I. H. Ashby, Fabrication of GaAs Devices (IET, London, UK, 2005).CrossRefGoogle Scholar
  2. 2.
    G. P. Schwartz, G. J. Gualtieri, G. W. Kammlott, and B. Schwartz, J. Electrochem. Soc. 126, 1737 (1979).CrossRefGoogle Scholar
  3. 3.
    J. P. Contour, J. Massies, and A. Saletes, Jpn. J. Appl. Phys. 24, L563 (1985).ADSCrossRefGoogle Scholar
  4. 4.
    T. Ishikawa and H. Ikoma, Jpn. J. Appl. Phys. 31, 3981 (1992).ADSCrossRefGoogle Scholar
  5. 5.
    G. Hollinger, R. Skheyta-Kabbani, and M. Gendry, Phys. Rev. B 49, 11159 (1994).ADSCrossRefGoogle Scholar
  6. 6.
    C. C. Surdu-Bob, S. O. Saied, and J. L. Sullivan, Appl. Surf. Sci. 183, 126 (2001).ADSCrossRefGoogle Scholar
  7. 7.
    M. R. Vilar, J. E. Beghdadi, F. Debontridder, R. Artzi, R. Naaman, A. M. Ferraria, and A. M. Botelho do Rego, Surf. Interface Anal. 37, 673 (2005).CrossRefGoogle Scholar
  8. 8.
    L. Feng, L. Zhang, H. Liu, X. Gao, Zh. Miao, L. Wang, S. Niu, and C. Cheng, Proc. SPIE 8912, 89120N (2013).CrossRefGoogle Scholar
  9. 9.
    X. Cheng, F. Shi, H. Cheng, S. Niu, L. Wang, Zh. Miao, and C. Chen, Proc. SPIE 9295, 929503 (2014).CrossRefGoogle Scholar
  10. 10.
    S. I. Fedoseenko, D. V. Vyalikh, I. E. Iossifov, R. Follath, S. A. Gorovikov, R. Püttner, J. S. Schmidt, S. L. Molodtsov, V. K. Adamchuk, W. Gudat, and G. Kaindl, Nucl. Instrum. Methods Phys. Res., Sect. A 505, 718 (2003).ADSCrossRefGoogle Scholar
  11. 11.
    I. L. Singer, J. S. Murday, and J. Comas, J. Vac. Sci. Technol. 18, 161 (1981).ADSCrossRefGoogle Scholar
  12. 12.
    V. M. Mikoushkin, V. V. Bryzgalov, Yu. S. Gordeev, S. Yu. Nikonov, A. P. Solonitsina, A. A. Zhuravleva, and M. M. Brzhezinskaya, Phys. Status Solidi C 6, 2655 (2009).ADSCrossRefGoogle Scholar
  13. 13.
    D. Briggs and M. P. Seah, Practical Surface Analysis by Auger and X-Ray Photoelectron Spectroscopy (Wiley, Chichester, 1983).Google Scholar
  14. 14.
    S. Tanuma, C. J. Powell, and D. R. Penn, Surf. Interface Anal. 17, 927 (1991).CrossRefGoogle Scholar
  15. 15.
    S. Tanuma, C. J. Powell, and D. R. Penn, Surf. Interface Anal. 43, 689 (2011).CrossRefGoogle Scholar
  16. 16.
    J. J. Yeh and I. Lindau, At. Data Nucl. Data Tables 32, 1 (1985).ADSCrossRefGoogle Scholar
  17. 17.
    D. P. Norton, Mater. Sci. Eng. R 43, 139 (2004).CrossRefGoogle Scholar
  18. 18.
    J. F. Ziegler, J. P. Biersack, and U. Littmark, The Stopping and Range of Ions in Solids (Pergamon, New York, 1985).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • V. M. Mikoushkin
    • 1
  • V. V. Bryzgalov
    • 1
  • S. Yu. Nikonov
    • 1
  • A. P. Solonitsyna
    • 1
  • D. E. Marchenko
    • 2
    • 3
  1. 1.Ioffe InstituteSt. PetersburgRussia
  2. 2.Technische Universität DresdenDresdenGermany
  3. 3.Helmholtz-Zentrum BESSY IIGerman-Russian LaboratoryBerlinGermany

Personalised recommendations