Semiconductors

, Volume 52, Issue 5, pp 622–624 | Cite as

Metal-Semiconductor Nanoheterostructures with an AlGaN Quantum Well and In Situ Formed Surface Al Nanoislands

  • E. A. Evropeytsev
  • A. N. Semenov
  • D. V. Nechaev
  • V. N. Jmerik
  • V. Kh. Kaibyshev
  • S. I. Troshkov
  • P. N. Brunkov
  • A. A. Usikova
  • S. V. Ivanov
  • A. A. Toropov
XXV International Symposium “Nanostructures: Physics and Technology”, Saint Petersburg, Russia, June 26–30, 2017. Nanostructure Technology

Abstract

We report on fabrication and studies of composite heterostuctures consisting of an Al0.55Ga0.45N/Al0.8Ga0.2N quantum well and surface Al nanoislands, grown by plasma-assisted molecularbeam epitaxy on c-sapphire substrates. The influence of a substrate temperature varied between 320 and 700ºC on the size and density of the deposited Al nanoislands is evaluated. The effect of Al nanoislands on decay kinetics of the quantum well middle-ultraviolet photoluminescence has been investigated by time resolved photoluminescence. The samples with the maximum density of Al nanoislands of 108 cm–2 and lateral dimensions in the range of 100–500 nm demonstrated shortening of the photoluminescence lifetime, induced by interaction of the emitting quantum well and the plasmonic metal particles.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Kneissl and J. Rass, in III-Nitride Ultraviolet Emitters: Technology and Applications, (Springer, Berlin, 2016), p. 80.CrossRefGoogle Scholar
  2. 2.
    S. Inoue, T. Naoki, T. Kinoshita, T. Obata, and H. Yanagi, Appl. Phys. Lett. 106, 131104 (2015).ADSCrossRefGoogle Scholar
  3. 3.
    I. Gontijo, M. Boroditsky, E. Yablonovitch, S. Keller, U. K. Mishra, and S. P. DenBaars, Phys. Rev. B 60, 564 (1999).CrossRefGoogle Scholar
  4. 4.
    K. G. Belyaev, A. A. Usikova, V. N. Jmerik, P. S. Kop’ev, S. V. Ivanov, A. A. Toropov, and P. N. Brunkov, Semiconductors 49, 247 (2015).ADSCrossRefGoogle Scholar
  5. 5.
    A. A. Toropov, T. V. Shubina, V. N. Jmerik, and S. V. Ivanov, Phys. Rev. Lett. 103, 037403 (2009).ADSCrossRefGoogle Scholar
  6. 6.
    Y. Ito, K. Matsuda, and Y. Kanemitsu, Phys. Rev. B 75, 033309 (2007).ADSCrossRefGoogle Scholar
  7. 7.
    C. T. Yuan, P. Yu, and J. Tang, Appl. Phys. Lett. 94, 243108 (2009).ADSCrossRefGoogle Scholar
  8. 8.
    C.-Y. Cho, Y. Zhang, et al., Appl. Phys. Lett 102, 211110 (2013).ADSCrossRefGoogle Scholar
  9. 9.
    V. N. Jmerik, E. V. Lutsenko, and S. V. Ivanov, Phys. Status Solidi A 210, 439 (2013).ADSCrossRefGoogle Scholar
  10. 10.
    S. V. Ivanov, D. V. Nechaev, et al., Semicond. Sci. Tech. 29, 084008 (2014).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • E. A. Evropeytsev
    • 1
  • A. N. Semenov
    • 1
  • D. V. Nechaev
    • 1
  • V. N. Jmerik
    • 1
  • V. Kh. Kaibyshev
    • 1
  • S. I. Troshkov
    • 1
  • P. N. Brunkov
    • 1
  • A. A. Usikova
    • 1
  • S. V. Ivanov
    • 1
  • A. A. Toropov
    • 1
  1. 1.Ioffe InstituteSt. PetersburgRussia

Personalised recommendations