Skip to main content
Log in

Luminescence Decay of Colloidal Quantum Dots and Stretched Exponential (Kohlrausch) Relaxation Function

  • XXV International Symposium “Nanostructures: Physics and Technology”, Saint Petersburg, Russia, June 26–30, 2017. Nanostructure Characterization
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The room temperature non-exponential luminescence decay of colloidal quantum dots is investigated theoretically in an attempt to identify the underlying physical mechanisms responsible for the shape of the decay. It is shown that a stretched exponential functional form of the luminescence decay can be understood in terms of long-range resonance energy transfer from quantum dots to acceptors (molecules, quantum dots, or anharmonic molecular vibrations) or by contact quenching by quenchers (surface traps, molecules or quantum dots) distributed statistically (Poisson distribution) on the surface of the dots. These non-radiative transition processes are assigned to different ranges of the stretching parameter β.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Jones and G. D. Scholes, J. Mater. Chem 20, 3533 (2010).

    Article  Google Scholar 

  2. M. Achermann, M. A. Petruska, S. A. Crooker, and V. I. Klimov, J. Phys. Chem. B 107, 13782 (2003).

    Article  Google Scholar 

  3. A. P. Litvin, P. S. Parfenov, E. V. Ushakova, T. A. Vorsina, A. L. Simões Gamboa, A. V. Fedorov, and A. V. Baranov, J. Phys. Chem. C 119, 17016 (2015).

    Article  Google Scholar 

  4. M. N. Berberan-Santos, E. N. Bodunov, and B. Valeur, Chem. Phys 315, 171 (2005).

    Article  ADS  Google Scholar 

  5. V. N. Soloviev, A. Eichhöfer, D. Fenske, and U. Banin, J. Am. Chem. Soc. 123, 2354 (2001).

    Article  Google Scholar 

  6. O. Schöps, N. le Thomas, U. Woggon, and M. V. Artemyev, J. Phys. Chem. B 110, 2074 (2006).

    Article  Google Scholar 

  7. S. Sadhu and A. Patra, J. Phys. Chem. C 115, 16867 (2011).

    Article  Google Scholar 

  8. Al. L. Efros, Phys. Rev. B 46, 7448 (1992).

    Article  ADS  Google Scholar 

  9. E. N. Bodunov, V. V. Danilov, A. S. Panfutova, and A. L. Simões Gamboa, Ann. Phys. (Berlin) 528, 272 (2016).

    Article  ADS  Google Scholar 

  10. J. Klafter and A. Blumen, J. Chem. Phys. 80, 875 (1984).

    Article  ADS  Google Scholar 

  11. M. N. Berberan-Santos, E. N. Bodunov, and J. M. G. Martinho, Opt. Spectrosc. 81, 217 (1996).

    ADS  Google Scholar 

  12. M. N. Berberan-Santos, E. N. Bodunov, and J. M. G. Martinho, Opt. Spectrosc. 87, 66 (1999).

    ADS  Google Scholar 

  13. E. N. Bodunov and M. N. Berberan-Santos, Opt. Spectrosc. 119, 22 (2015).

    Article  ADS  Google Scholar 

  14. E. N. Bodunov, Yu. A. Antonov, and A. L. Simões Gamboa, J. Chem. Phys. 146, 114102 (2017).

    Article  ADS  Google Scholar 

  15. D. Feng, D. R. Yakovlev, V. V. Pavlov, A. V. Rodina, E. V. Shornikova, J. Mund, and M. Bayer, Nano Lett. 17, 2844 (2017).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. N. Bodunov.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bodunov, E.N., Simões Gamboa, A.L. Luminescence Decay of Colloidal Quantum Dots and Stretched Exponential (Kohlrausch) Relaxation Function. Semiconductors 52, 587–589 (2018). https://doi.org/10.1134/S1063782618050044

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782618050044

Navigation