, Volume 52, Issue 5, pp 551–553 | Cite as

Calculation of Energy States of Excitons in Square Quantum Wells

  • P. A. Belov
XXV International Symposium “Nanostructures: Physics and Technology”, Saint Petersburg, Russia, June 26–30, 2017. Excitons in Nanostructures


The ground and excited energy states of excitons in single square GaAs-based quantum wells are found by the numerical solution of the three-dimensional Schrödinger equation. This equation is obtained within the envelope-function formalism from the exciton energy operator using the spherical approximation of the Luttinger Hamiltonian. Precise results for the exciton states are achieved by the finite-difference method. The radiative decay rates of the calculated states are also determined.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. L. Ivchenko, Optical Spectroscopy of Semiconductor Nanostructures (Alpha Science, Harrow, 2005).Google Scholar
  2. 2.
    S. V. Poltavtsev and B. V. Stroganov, Phys. Solid State 52, 1899 (2010).ADSCrossRefGoogle Scholar
  3. 3.
    S. V. Poltavtsev, Yu. P. Efimov, Yu. K. Dolgikh, et al., Solid State Commun. 199, 47 (2014).ADSCrossRefGoogle Scholar
  4. 4.
    D. K. Loginov, A. V. Trifonov, and I. V. Ignatiev, Phys. Rev. B 90, 075306 (2014).ADSCrossRefGoogle Scholar
  5. 5.
    A. V. Trifonov, S. N. Korotan, A. S. Kurdyubov, et al., Phys. Rev. B 91, 115307 (2015).ADSCrossRefGoogle Scholar
  6. 6.
    D. B. T. Thoai, R. Zimmermann, M. Grundmann, and D. Bimberg, Phys. Rev. B 42, 5609(R) (1990).CrossRefGoogle Scholar
  7. 7.
    B. Gerlach, J. Wüsthoff, M. O. Dzero, and M. A. Smondyrev, Phys. Rev. B 58, 10568 (1998).ADSCrossRefGoogle Scholar
  8. 8.
    E. S. Khramtsov, P. A. Belov, P. S. Grigoryev, et al., J. Appl. Phys. 119, 184301 (2016).ADSCrossRefGoogle Scholar
  9. 9.
    P. A. Belov and E. S. Khramtsov, J. Phys.: Conf. Ser. 816, 012018 (2017).Google Scholar
  10. 10.
    J. M. Luttinger, Phys. Rev. 102, 1030 (1956).ADSCrossRefGoogle Scholar
  11. 11.
    A. A. Samarskii, The Theory of Difference Schemes (Nauka, Moscow, 1989) [in Russian].zbMATHGoogle Scholar
  12. 12.
    S. Glutsch, Excitons in Low-Dimensional Semiconductors (Berlin, Springer, 2004).CrossRefGoogle Scholar
  13. 13.
    R. B. Lehoucq, D. C. Sorensen, and C. Yang, ARPACK Users’ Guide: Solution of Large-Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods (SIAM, Philadelphia, 1997).zbMATHGoogle Scholar
  14. 14.
    I. Vurgaftman, J. R. Meyer and L. R. Ram-Mohan, J. Appl. Phys. 89, 5815 (2001).ADSCrossRefGoogle Scholar
  15. 15.
    M. M. Voronov, E. L. Ivchenko, V. A. Kosobukin and A. N. Poddubny, Phys. Solid State 49, 1792 (2007).ADSCrossRefGoogle Scholar
  16. 16.
    Y. Chen, N. Maharjan, Z. Liu, et al., J. Appl. Phys. 121, 103101 (2017).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Department of Computational PhysicsSt. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations