Advertisement

Semiconductors

, Volume 52, Issue 5, pp 609–611 | Cite as

GaAs Wurtzite Nanowires for Hybrid Piezoelectric Solar Cells

  • P. A. Alekseev
  • V. A. Sharov
  • P. Geydt
  • M. S. Dunaevskiy
  • I. P. Soshnikov
  • R. R. Reznik
  • V. V. Lysak
  • E. Lähderanta
  • G. E. Cirlin
XXV International Symposium “Nanostructures: Physics and Technology”, Saint Petersburg, Russia, June 26–30, 2017. Nanostructure Characterization
  • 27 Downloads

Abstract

The properties of the hybrid energy sources “piezoelectric nanogenerator-solar cell” based on GaAs nanowires with the wurtzite crystal structure were investigated. Measurements were performed by the bending of the nanowire by the probe of the atomic force microscope with simultaneous recording of short circuit current in dark and illuminated conditions. We show that a piezoelectric current pulse of ~10 pA arises in the “nanowire-probe” circuit during the deformation of nanowire by the AFM probe. Under laser illumination, the value of the pulse increases by two orders of magnitude as a result of the piezophototronic effect. Deformation of the nanowire boosts the photocurrent by 40% up to 0.5 nA.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Z. L. Wang, Adv. Funct. Mater. 18, 3553 (2008).CrossRefGoogle Scholar
  2. 2.
    C. Xu and Z. L. Wang, Adv. Mater. 23, 873 (2011).CrossRefGoogle Scholar
  3. 3.
    Z. L. Wang and J. Song, Science 312, 242 (2006).CrossRefADSGoogle Scholar
  4. 4.
    I. Åberg, G. Vescovi, D. Asoli, U. Naseem, J. P. Gilboy, C. Sundvall, A. Dahlgren, K. E. Svensson, N. Anttu, M. T. Bjork, and L. Samuelson, IEEE J. Photovolt. 6, 185 (2016).CrossRefGoogle Scholar
  5. 5.
    V. Lysak, I. P Soshnikov, E. Lahderanta, and G. E. Cirlin, Phys. Status Solidi RRL 10, 172 (2016).CrossRefGoogle Scholar
  6. 6.
    H. Al-Zahrani, J. Pal, M. A. Migliorato, G. Tse, and D. Yu, Nano Energy 14, 382 (2015).CrossRefGoogle Scholar
  7. 7.
    X. Wen, W. Wu, and Z. L. Wang, Nano Energy 2, 1093 (2013).CrossRefGoogle Scholar
  8. 8.
    F. Boxberg, N. Søndergaard, and H. Q. Xu, Nano Lett. 10, 1108 (2010).CrossRefADSGoogle Scholar
  9. 9.
    V. G. Dubrovskii, I. P. Soshnikov, N. V. Sibirev, Yu. B. Samsonenko, and V. M. Ustinov, Phys. Rev. 71, 205325 (2005).CrossRefGoogle Scholar
  10. 10.
    P. Geydt, P. A. Alekseev, M. S. Dunaevskiy, E. Lähderanta, T. Haggrén, J.-P. Kakko, and H. Lipsanen, Lithuan. J. Phys. 56, 92 (2016).Google Scholar
  11. 11.
    P. A. Alekseev, M. S. Dunaevskiy, V. P, Ulin, T. V. Lvova, D. O. Filatov, A. V. Nezdanov, A. I. Mashin, and V. L. Berkovitz, Nano Lett. 15, 63 (2015).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • P. A. Alekseev
    • 1
  • V. A. Sharov
    • 1
  • P. Geydt
    • 2
  • M. S. Dunaevskiy
    • 1
  • I. P. Soshnikov
    • 1
    • 3
    • 4
  • R. R. Reznik
    • 3
    • 4
    • 5
  • V. V. Lysak
    • 1
    • 3
  • E. Lähderanta
    • 2
  • G. E. Cirlin
    • 3
    • 4
    • 5
  1. 1.Ioffe InstituteSt. PetersburgRussia
  2. 2.Lappeenranta University of TechnologyLappeenrantaFinland
  3. 3.Academic UniversitySt. PetersburgRussia
  4. 4.Institute of Analytical InstrumentationSt. PetersburgRussia
  5. 5.ITMO UniversitySt. PetersburgRussia

Personalised recommendations