, Volume 52, Issue 4, pp 485–488 | Cite as

Partial Electron Localization in a Finite-Size Superlattice Placed in an Electric Field

  • K. R. Vlasov
  • M. A. Pyataev
  • A. V. Shorokhov
XXV International Symposium “Nanostructures: Physics and Technology”, Saint Petersburg, June 26–30, 2017. Transport In Heterostructures


Partial electron localization in a finite-size superlattice placed in an electric field is considered. The role of electric field in forming of quasilocalized states is investigated. A quantitative criterion for the degree of partial localization is suggested based on analysis of maximal probability density of finding an electron at a given point. It is found that with increase in the electric field the degree of localization does not increase monotonically. Furthermore, the localization is affected stronger by the amplitude of superlattice potential than by the electric field.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. H. Wannier, Phys. Rev. 117, 432 (1960).ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    J. Zak, Phys. Rev. Lett. 20, 1477 (1968).ADSCrossRefGoogle Scholar
  3. 3.
    J. Zak, Phys. Rev. B 43, 4519 (1991).ADSCrossRefGoogle Scholar
  4. 4.
    J. E. Avron, J. Zak, A. Grossmann, and L. Gunther, J. Math. Phys. 18, 918 (1977).ADSCrossRefGoogle Scholar
  5. 5.
    G. Nenciu, Rev. Mod. Phys. 63, 91 (1991).ADSCrossRefGoogle Scholar
  6. 6.
    M. Glück, A. R. Kolovsky, H. J. Korsch, and F. Zimmer, Phys. Rev. B 65, 115302 (2002).ADSCrossRefGoogle Scholar
  7. 7.
    M. Glück, A. R. Kolovsky, and H. J. Korsch, Phys. Rep. 366, 103 (2002).ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    E. E. Mendez, F. Agullo-Rueda, and J. M. Hong, Phys. Rev. Lett. 60, 2426 (1988).ADSCrossRefGoogle Scholar
  9. 9.
    P. Voisin, J. Bleuse, C. Bouche, S. Gaillard, C. Alibert, and A. Regreny, Phys. Rev. Lett. 61, 1639 (1988).ADSCrossRefGoogle Scholar
  10. 10.
    E. E. Mendez and G. Bastard, Phys. Today 46, 34 (1993).CrossRefGoogle Scholar
  11. 11.
    G. Tackmann, B. Pelle, A. Hilico, Q. Beaufils, and F. Pereira dos Santos, Phys. Rev. A 84, 063422 (2011).ADSCrossRefGoogle Scholar
  12. 12.
    G. J. Ferreira, M. N. Leuenberger, D. Loss, and J. C. Egues, Phys. Rev. B 84, 125453 (2011).ADSCrossRefGoogle Scholar
  13. 13.
    H. K. Kelardeh, V. Apalkov, and M. I. Stockman, Phys. Rev. B 90, 085313 (2014).ADSCrossRefGoogle Scholar
  14. 14.
    Q. Beaufils, G. Tackmann, X. Wang, B. Pelle, S. Pelisson, P. Wolf, and F. Pereira dos Santos, Phys. Rev. Lett. 106, 213002 (2011).ADSCrossRefGoogle Scholar
  15. 15.
    A. Maury, M. Donaire, M.-P. Gorza, A. Lambrecht, and R. Guérout, Phys. Rev. A 94, 053602 (2016).ADSCrossRefGoogle Scholar
  16. 16.
    V. I. Sankin, Semiconductors 36, 717 (2002).ADSCrossRefGoogle Scholar
  17. 17.
    V. I. Sankin, A. V. Andrianov, A. O. Zakharin, and A. G. Petrov, JETP Lett. 94, 362 (2011).ADSCrossRefGoogle Scholar
  18. 18.
    V. I. Sankin, A. V. Andrianov, A. O. Zakhar’in, and A. G. Petrov, Appl. Phys. Lett. 100, 111109 (2012).ADSCrossRefGoogle Scholar
  19. 19.
    K. A. Ivanov, A. G. Petrov, M. A. Kaliteevski, and A. J. Gallant, JETP Lett. 102, 796 (2015).ADSCrossRefGoogle Scholar
  20. 20.
    W. W. Lui and M. Fukuma, J. Appl. Phys. 60, 1555 (1986).ADSCrossRefGoogle Scholar
  21. 21.
    K. F. Brennan and C. J. Summers, J. Appl. Phys. 61, 614 (1987).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • K. R. Vlasov
    • 1
  • M. A. Pyataev
    • 1
  • A. V. Shorokhov
    • 1
  1. 1.National Research Mordovia State UniversitySaranskRussia

Personalised recommendations