Advertisement

Semiconductors

, Volume 52, Issue 4, pp 468–472 | Cite as

Resonant Optical Reflection from AsSb–AlGaAs Metamaterials and Structures

  • V. I. Ushanov
  • V. V. Chaldyshev
  • V. V. Preobrazhenskiy
  • M. A. Putyato
  • B. R. Semyagin
XXV International Symposium “Nanostructures: Physics and Technology”, Saint Petersburg, June 26–30, 2017. Optoelectronics, Optical Properties
  • 11 Downloads

Abstract

The optical reflection in periodic structures based on a semiconductor AlGaAs matrix containing two-dimensional arrays of plasmonic AsSb nanoinclusions was studied. The number of periods was 12 or 24. The spatial period was near 110 nm in both cases. In the experimental optical reflection spectra at normal incidence we observed resonant Bragg diffraction with the main peaks at wavelengths of 757 or 775 nm, depending on the spatial period of the nanostructure. The magnitudes of the resonance peaks reached 19 and 31% for the systems of 12 and 24 AsSb–AlGaAs layers, while the volume fraction of the nanoinclusions was much less than 1%. In the case of light incident at inclined angles, the Bragg-diffraction pattern shifted according to Wulff-Bragg’s law. Numerical calculations of the optical reflection spectra were performed using the transfer-matrix method by taking into account the spatial geometry of the structures and the resonance characteristics of the plasmonic AsSb layers.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Kauranen and A. V. Zayats, Nat. Photon. 6, 737 (2012).ADSCrossRefGoogle Scholar
  2. 2.
    K. Yao and Y. Liu, Nanotechnol. Rev. 3, 177 (2014).CrossRefGoogle Scholar
  3. 3.
    C. Bohren and D. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1998; Mir, Moscow, 1986).CrossRefGoogle Scholar
  4. 4.
    M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge Univ. Press, UK, 2002).Google Scholar
  5. 5.
    V. V. Chaldyshev, M. A. Putyato, B. R. Semyagin, V. V. Preobrazhenskii, O. P. Pchelyakov, A. V. Khan, V. G. Kanaev, L. S. Shirokova, A. V. Golikov, V. A. Kagadei, Yu. V. Lilenko, and N. V. Karpovich, Elektron. Prom-st’, Nos. 1–2, 154 (1998).Google Scholar
  6. 6.
    V. I. Ushanov, V. V. Chaldyshev, N. D. Il’inskaya, N. M. Lebedeva, M. A. Yagovkina, V. V. Preobrazhenskii, M. A. Putyato, and B. R. Semyagin, Phys. Solid State 56, 1952 (2014).CrossRefGoogle Scholar
  7. 7.
    P. V. Lukin, V. V. Chaldyshev, V. V. Preobrazhenskii, M. A. Putyato, and B. R. Semyagin, Semiconductors 46, 1291 (2012).ADSCrossRefGoogle Scholar
  8. 8.
    V. I. Ushanov, V. V. Chaldyshev, N. A. Bert, V. N. Nevedomskii, N. D. Il’inskaya, N. M. Lebedeva, V. V. Preobrazhenskii, M. A. Putyato, and B. R. Semyagin, Semiconductors 49, 1587 (2015).ADSCrossRefGoogle Scholar
  9. 9.
    S. Adachi, J. Appl. Phys. 58, 3 (1985).ADSCrossRefGoogle Scholar
  10. 10.
    V. I. Ushanov, V. V. Chaldyshev, V. V. Preobrazhenskii, M. A. Putyato, and B. R. Semyagin, Semiconductors 47, 1046 (2013).ADSCrossRefGoogle Scholar
  11. 11.
    B. N. J. Persson and A. Liebsch, Phys. Rev. B 28, 4247 (1983).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • V. I. Ushanov
    • 1
  • V. V. Chaldyshev
    • 1
  • V. V. Preobrazhenskiy
    • 2
  • M. A. Putyato
    • 2
  • B. R. Semyagin
    • 2
  1. 1.Ioffe InstituteSt. PetersburgRussia
  2. 2.Rzhanov Institute of Semiconductor PhysicsNovosibirskRussia

Personalised recommendations