, Volume 52, Issue 4, pp 458–461 | Cite as

Localization-Delocalization Transition in Disordered One-Dimensional Exciton-Polariton System

  • A. V. Larionov
  • A. S. Brichkin
  • S. Höfling
  • V. D. Kulakovskii
XXV International Symposium “Nanostructures: Physics and Technology”, Saint Petersburg, June 26–30, 2017. Optoelectronics, Optical Properties


The transition from the delocalized to the localized state has been investigated in a quasi-onedimensional exciton-polariton system excited nonresonantly in GaAs-based microcavity wire with disordered potential. The photoexcited polariton condensate has been found to spread along the wire with а velocity exceeding 1 μm/ps. The propagation along the wire is provided by high energy polaritons. The LP localization length decreases with decreasing blue shift of LPs in the excited spot. The polariton condensate returns to the Bose glass state when the blue shift of the LP resonance at the excitation spot decreases below the critical level that depends on the potential disorder.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. Kramer and A. MacKinnon, Rep. Prog. Phys. 56, 1469 (1993).ADSCrossRefGoogle Scholar
  2. 2.
    T. Giamarchi and H. J. Schulz, Phys. Rev. B 37, 325 (1988).ADSCrossRefGoogle Scholar
  3. 3.
    R. T. Scalettar, G. G. Batrouni, and G. T. Zimanyi, Phys. Rev. Lett. 66, 3144 (1991).ADSCrossRefGoogle Scholar
  4. 4.
    L. Fontanesi, M. Wouters, and V. Savona, Phys. Rev. Lett. 103, 030403 (2009).ADSCrossRefGoogle Scholar
  5. 5.
    I. L. Aleiner, B. L. Altshuler, and G. V. Shlyapnikov, Nat. Phys. 6, 900 (2010).CrossRefGoogle Scholar
  6. 6.
    P. G. Lagoudakis, P. G. Savvidis, J. J. Baumberg, D.M. Whittaker, P. R. Eastham, M. S. Skolnick, and J. S. Roberts, Phys. Rev. B 65, 161310 (2002).ADSCrossRefGoogle Scholar
  7. 7.
    A. Amo, T. C. H. Liew, C. Adrados, R. Houdré, E. Giacobino, A. V. Kavokin, and A. Bramati, Nat. Photon. 4, 361 (2010).ADSCrossRefGoogle Scholar
  8. 8.
    S. S. Gavrilov, A. V. Sekretenko, S. I. Novikov, C. Schneider, S. Höfling, M. Kamp, A. Forchel, and V. D. Kulakovskii, Appl. Phys. Lett. 102, 011104 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    C. Adrados, T. C. H. Liew, A. Amo, M. D. Martín, D. Sanvitto, C. Antón, E. Giacobino, A. Kavokin, A. Bramati, and L. Viña, Phys. Rev. Lett. 107, 146402 (2011).ADSCrossRefGoogle Scholar
  10. 10.
    A. S. Brichkin, S. G. Tikhodeev, S. S. Gavrilov, N. A. Gippius, S. I. Novikov, A. V. Larionov, C. Schneider, M. Kamp, S. Höfling, and V. D. Kulakovskii, Phys. Rev. B 92, 125155 (2015)ADSCrossRefGoogle Scholar
  11. 11.
    E. Wertz, L. Ferrier, D. D. Solnyshkov, R. Johne, D. Sanvitto, A. Lemâtre, I. Sagnes, R. Grousson, A. V. Kavokin, P. Senellart, G. Malpuech, and J. Bloch, Nat. Phys. 6, 860 (2010).CrossRefGoogle Scholar
  12. 12.
    E. Kammann, T. C. H. Liew, H. Ohadi, P. Cilibrizzi, P. Tsotsis, Z. Hatzopoulos, P. G. Savvidis, A. V. Kavokin, and P. G. Lagoudakis, Phys. Rev. Lett. 109, 036404 (2012).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. V. Larionov
    • 1
  • A. S. Brichkin
    • 1
  • S. Höfling
    • 2
  • V. D. Kulakovskii
    • 1
    • 3
  1. 1.Institute of Solid State Physics Russian Academy of SciencesChernogolovkaRussia
  2. 2.Technische Physik, Physikalisches Institut and Wilhelm Conrad Röntgen Research Center for Complex Material SystemsUniversität WürzburgWürzburgGermany
  3. 3.National Research University Higher School of EconomicsMoscowRussia

Personalised recommendations