Advertisement

Semiconductors

, Volume 52, Issue 4, pp 519–522 | Cite as

Zeeman Splitting of Electron Spectrum in HgTe Quantum Wells Near the Dirac Point

  • A. V. Germanenko
  • G. M. Minkov
  • A. A. Sherstobitov
  • O. E. Rut
  • S. A. Dvoretski
  • N. N. Mikhailov
XXV International Symposium “Nanostructures: Physics and Technology”, Saint Petersburg, June 26–30, 2017. Quantum Wells, Quantum Wires, Quantum Dots, and Band Structure
  • 20 Downloads

Abstract

The Zeeman splitting of the conduction band in the HgTe quantum wells both with normal and inverted spectrum has been studied experimentally in a wide electron density range. The simultaneous analysis of the Shubnikov–de Haas oscillations in low magnetic fields at different tilt angles and of the shape of the oscillations in moderate magnetic fields gives a possibility to find the ratio of the Zeeman splitting to the orbital one and anisotropy of g-factor. It is shown that the ratios of the Zeeman splitting to the orbital one are close to each other for both types of structures, with a normal and inverted spectrum and they are close enough to the values calculated within kP method. In contrast, the values of g-factor anisotropy in the structures with normal and inverted spectra are strongly different and for both cases differ significantly from the calculated ones. We assume that such disagreement with calculations is a result of the interface inversion asymmetry in the HgTe quantum well, which is not taken into account in the kP calculations.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. F. Fang and P. J. Stiles, Phys. Rev. 174, 823 (1968).ADSCrossRefGoogle Scholar
  2. 2.
    S. A. Studenikin, P. T. Coleridge, G. Yu, and P. Poole, Semicond. Sci. Technol. 20, 1103 (2005).ADSCrossRefGoogle Scholar
  3. 3.
    A. V. Germanenko, N. Kozlova, G. M. Minkov, O. E. Rut, A. A. Sherstobitov, and J. Freudenberger, Phys. E (Amsterdam, Neth.) 42, 960 (2010).CrossRefGoogle Scholar
  4. 4.
    I. M. Lifshits and A. M. Kosevich, Sov. Phys. JETP 2, 636 (1956).Google Scholar
  5. 5.
    M. Zholudev, PhD Thesis (Univ. Montpellier 2, France, 2013).Google Scholar
  6. 6.
    B. A. Bernevig, T. L. Hughes, and S.-C. Zhang, Science 314, 1757 (2006).ADSCrossRefGoogle Scholar
  7. 7.
    O. E. Raichev, Phys. Rev. B 85, 045310 (2012).ADSCrossRefGoogle Scholar
  8. 8.
    G. M. Minkov, G. M. Minkov, A. V. Germanenko, O. E. Rut, A. A. Sherstobitov, M. O. Nestoklon, S. A. Dvoretski, and N. N. Mikhailov, Phys. Rev. B 93, 155304 (2016).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. V. Germanenko
    • 1
  • G. M. Minkov
    • 1
    • 2
  • A. A. Sherstobitov
    • 1
    • 2
  • O. E. Rut
    • 1
  • S. A. Dvoretski
    • 3
  • N. N. Mikhailov
    • 3
  1. 1.School of Natural Sciences and MathematicsUral Federal UniversityEkaterinburgRussia
  2. 2.Institute of Metal Physics Russian Academy of SciencesEkaterinburgRussia
  3. 3.Institute of Semiconductor Physics Russian Academy of SciencesNovosibirskRussia

Personalised recommendations