, Volume 52, Issue 4, pp 420–430 | Cite as

Investigation on High-κ Dielectric for Low Leakage AlGaN/GaN MIS-HEMT Device, Using Material Selection Methodologies

  • Baikadi Pranay Kumar Reddy
  • Karri Babu Ravi Teja
  • Kavindra Kandpal


This paper analyzes various high-κ dielectrics for low leakage AlGaN (Aluminium Gallium Nitride)/GaN (Gallium Nitride) MIS-HEMT (Metal Insulator Semiconductor—High Electron Mobility Transistor) device. The investigation is carried out by examining different attributes such as the dielectric constant, conduction band offset, and energy band gap of the dielectric which are crucial for a good dielectric-AlGaN interface. This work also computes the values of band offsets of different dielectrics to AlGaN analytically. The selection of the most promising dielectric is done using three different multi-criteria decision making methods (MCDM) namely the Ashby, VIKOR (VIseKriterijumska Optimizacija I Kompromisno Resenje in Serbian, meaning Multicriteria Optimization and Compromise Solution) and TOPSIS (Technique for Order Preference by Similarity to Ideal Solution). All the analyses point to La2O3 as the best gate dielectric for AlGaN/GaN MIS-HEMT device.


MIS-HEMT high-κ dielectric Ashby VIKOR TOPSIS Conduction band offset 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Riordan, IEEE Spectrum 41, 44 (2004).Google Scholar
  2. 2.
    D. Guo et al., in Proceedings of 12th IEEE International Conference on Solid-State and Integrated Circuit Technology ICSICT, Guilin, China, Oct. 28–31, 2014.Google Scholar
  3. 3.
    H. X. Guang, Z. D. Gang, and J. D. Sheng, Chin. Phys. B 24, 067301 (2015).ADSCrossRefGoogle Scholar
  4. 4.
    W. Lu, L. Wang, S. Gu, D. P. R. Aplin, D. M. Estrada, P. K. L. Yu, and P. M. Asbeck, IEEE Trans. Electron. Dev. 58, 1986 (2011).ADSCrossRefGoogle Scholar
  5. 5.
    J. Chen, T. Kawanago, H. Wakabayashi, K. Tsutsui, H. Iwai, D. Nohata, H. Nohira, and K. Kakushima, Microelectron. Reliab. 60, 16 (2016).CrossRefGoogle Scholar
  6. 6.
    M. V Hove, X. Kang, S. Stoffels, D. Wellekens, N. Ronchi, R. Venegas, K. Geens, and S. Decoutere, IEEE Trans Electron Dev. 60, 3071 (2013).ADSCrossRefGoogle Scholar
  7. 7.
    G. Ye, H. Wang, S. Arulkumaran, G. I. Ng, R. Hofstetterl, Y. Li, M. J. Anand, K. S. Ang, Y. K. T. Maung, and S. C. Foo, in Proceedings of IEEE 71st Device Research Conference, Notre Dame, USA, June 23–26, 2013, p. 71.CrossRefGoogle Scholar
  8. 8.
    B. Y. Chou et al., IEEE Electron Dev. Lett. 35, 1091 (2014).ADSCrossRefGoogle Scholar
  9. 9.
    C. Liao et al., IEEE Electron Dev. Lett. 36, 1284 (2015).ADSCrossRefGoogle Scholar
  10. 10.
    L. Anojkumar, M. Ilangkumaran, and V. Sasirekha, Expert Syst. Appl. 41, 2964 (2014).CrossRefGoogle Scholar
  11. 11.
    K. Kandpal and N. Gupta, J. Mater. Sci. Mater. Electron. 27, 5972 (2016).CrossRefGoogle Scholar
  12. 12.
    P. Sharma and N. Gupta, J. Mater. Sci. Mater. Electron. 26, 9607 (2015).CrossRefGoogle Scholar
  13. 13.
    L. M. Wang, in Proceedings of 25th International Conference on Microelectronics MIEL 2006, Belgrade, Serbia, Montenegro, May 14–17, 2006.Google Scholar
  14. 14.
    H. Zhang, E. J. Miller, and E. T. Yu, J. Appl. Phys. 99, 023703 (2006).ADSCrossRefGoogle Scholar
  15. 15.
    D. Yan, H. Lu, D. Cao, D. Chen, R. Zhang, and Y. Zheng, Appl. Phys. Lett. 97, 153503 (2010).ADSCrossRefGoogle Scholar
  16. 16.
    S. Turuvekere, N. Karumuri, A. A. Rahman, A. Bhattacharya, A. Das Gupta, and N. Das Gupta, IEEE Trans Electron Dev. 60, 3157 (2013).ADSCrossRefGoogle Scholar
  17. 17.
    J. Robertson, Eur. Phys. J. Appl. Phys. 28, 265291 (2004).CrossRefGoogle Scholar
  18. 18.
    R. L. Anderson, Solid State Electron. 5, 341 (1962).ADSCrossRefGoogle Scholar
  19. 19.
    D. W. Niles and G. Margaritondo, Phys. Rev. B 34, 2923 (1988).ADSCrossRefGoogle Scholar
  20. 20.
    J. Robertson, J. Vac. Sci. Technol. B 18, 1785 (2000).CrossRefGoogle Scholar
  21. 21.
    J. Robertson and B. Falabretti, J. Appl. Phys. 100, 014111 (2006).ADSCrossRefGoogle Scholar
  22. 22.
    B. S. Eller, J. Yang, and R. J. Nemanich, J. Vac. Sci. Technol. A 31, 050807 (2013)CrossRefGoogle Scholar
  23. 23.
    S. P. Grabowski, M. Schneider, H. Nienhaus, W. Monch. R. Dimitrov, O. Ambacher, and M. Stutzmann, Appl. Phys. Lett. 78, 2503 (2001).ADSCrossRefGoogle Scholar
  24. 24.
    S. R. Lee, A. F. Wright, M. H. Crawford, G. A. Petersen, J. Han, and R. M. Biefeld, Appl. Phys. Lett. 74, 3344 (1999).ADSCrossRefGoogle Scholar
  25. 25.
    N. Nepal, J. Li, M. L. Nakarmi, J. Y. Lin, and H. X. Jiang, Appl. Phys. Lett. 87, 242104 (2005).ADSCrossRefGoogle Scholar
  26. 26.
    J. Sanghera, W. Kim, G. Villalobos, B. Shaw, C. Baker, J. Frantz, B. Sadowski, and I. Aggarwal, Materials 5, 258277 (2012).CrossRefGoogle Scholar
  27. 27.
    S. R. Skaggs, Report No. LA-6918-MS (Los Alamos Sci. Lab., NM, 1977).Google Scholar
  28. 28.
    V. B. Braginsky and A. A. Samoilenko, Phys. Lett. A 315, 175177 (2003).CrossRefGoogle Scholar
  29. 29.
    R. V. Krishnan, G. Panneerselvam, P. Mankinandan, M. P. Antony, and K. Nagarajan, J. Nucl. Radiochem. Sci. 10, 1926 (2009).CrossRefGoogle Scholar
  30. 30.
    L. E. Stevens, Master’s Thesis (Utah State Univ., Logan, Utah, 2013).Google Scholar
  31. 31.
    M. F. Ashby, Acta Mater. 48, 1792 (2000)CrossRefGoogle Scholar
  32. 32.
    M. F. Ashby, Material Selection in Mechanical Design, 2nd ed. (Butterworth-Heinemann, Oxford, 2005).Google Scholar
  33. 33.
    International Technology Roadmap for Semiconductors ITRSs (Semiconductor Industry Association, San Jose, CA, 2006).Google Scholar
  34. 34.
    A. P. Huang, Z. C. Yang, and P. K. Chu, in Hafnium-Based High-K Gate Dielectrics, Ed. by P. K. Chu, Vol. 446 of Advances in Solid State Circuits Technologies (InTech, Rijeka, Croatia, 2010).Google Scholar
  35. 35.
    C. Hwang and K. Yoon, in Multiple Attribute Decision Making: Methods and Application, A State-of-the-Art Survey, 1st ed., Vol. 181 of Lecture Notes in Economics and Mathematical Systems (Springer, Berlin, 1981), p. 58.zbMATHGoogle Scholar
  36. 36.
    S. Opricovic, PhD Thesis (Faculty of Civil Eng., Belgrade, 1998).Google Scholar
  37. 37.
    C. L. Chang, Environ. Monit. Assess. 168, 339344 (2010).CrossRefGoogle Scholar
  38. 38.
    C. W. Lin, C. W. Yang, C. H. Chen, C. K. Lin, and H. C. Chiu, in Proceedings of European Solid State Device Research Conference, Athens, Greece, Sept. 14–18, 2009.Google Scholar
  39. 39.
    S. Yang et al., IEEE Electron Dev. Lett. 33, 979 (2012).ADSCrossRefGoogle Scholar
  40. 40.
    Q. Lu et al., in Proceedings of International Semiconductor Device Research Symposium, Washington, DC, USA, Dec. 5–7, 2001, p. 377.Google Scholar
  41. 41.
    K. P. Huang et al., IEEE Trans. Electron Dev. 63, 4273 (2016).ADSCrossRefGoogle Scholar
  42. 42.
    L. Trojman, IEEE Lat. Am. Trans. 14, 4235 (2016).CrossRefGoogle Scholar
  43. 43.
    Y. C. Byun et al., J. Phys. D: Appl. Phys. 45, 435305 (2012).CrossRefGoogle Scholar
  44. 44.
    L. X. Qian, P. T. Lai, and W. M. Tang, Appl. Phys. Lett. 104, 123505 (2014).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • Baikadi Pranay Kumar Reddy
    • 1
  • Karri Babu Ravi Teja
    • 1
  • Kavindra Kandpal
    • 1
  1. 1.Department of Electrical and Electronics EngineeringBirla Institute of Technology and Science PilaniRajasthanIndia

Personalised recommendations