Semiconductors

, Volume 52, Issue 4, pp 431–435 | Cite as

THz Stimulated Emission from Simple Superlattice in Positive Differential Conductivity Region

  • A. A. Andronov
  • A. V. Ikonnikov
  • K. V. Maremianin
  • V. I. Pozdnjakova
  • Y. N. Nozdrin
  • A. A. Marmalyuk
  • A. A. Padalitsa
  • M. A. Ladugin
  • V. A. Belyakov
  • I. V. Ladenkov
  • A. G. Fefelov
XXV International Symposium “Nanostructures: Physics and Technology”, Saint Petersburg, June 26–30, 2017. Optoelectronics, Optical Properties

Abstract

Narrow band emissions at 2.6–2.8 THz are observed out of liquid helium cooled 1 mm disk chips prepared of a wafer with the very low n type doped weak barrier GaAs–GaAlAs superlattice of 1000 periods. The emissions are at about 8.0–18.0 V pulsed voltage applied to the chips in region of the chips positive DC differential conductivity that guaranties absence of inhomogeneous electric field domains in the chips. The emission frequency bands are estimated with a cyclotron resonance filter; the measurements show that the band width is of about that of the THz quantum cascade laser. By using long voltage pulses the chip heating above 100 K is achieved without substantial change in emission power. We speculate that the emission is super luminescence (amplification) of whispering gallery modes in the chips as a result of inverted Wannier-Stark level transitions under bias. The results are the first world demonstration of THz stimulated emission in a simple superlattice within region of positive DC differential conductivity; they give strong impetus for development of THz and higher frequency sources based on such simple superlattices; the sources should well compete with the THz quantum cascade lasers in particular at elevated temperatures.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Esaki and R. Tsu, IBM J. Res. Dev. 14, 61 (1970).CrossRefGoogle Scholar
  2. 2.
    S. A. Ktitorov, G. S. Simin, and V. Ya. Sandolovski, Sov. Phys. Solid State 13, 1872 (1971).Google Scholar
  3. 3.
    R. F. Kazarinov and R. A. Suris, Sov. Phys. Semicond. 5, 707 (1971).Google Scholar
  4. 4.
    J. Faist, F. Capasso, D. L. Sivco, et al., Science 264, 553 (1994).ADSCrossRefGoogle Scholar
  5. 5.
    R. Köhler, A. Tredicucci, F. Beltram, et al., Nature (London, U.K.) 417, 156 (2002).ADSCrossRefGoogle Scholar
  6. 6.
    B. S. Williams, B. S. Kumar, H. Callebaut, and G. Hu, Appl. Phys. Lett. 82, 2124 (2003).ADSCrossRefGoogle Scholar
  7. 7.
    A. A. Andronov, I. M. Nefedov and S. V. Sosnin, Semiconductors 37, 360 (2003).ADSCrossRefGoogle Scholar
  8. 8.
    A. A. Andronov, E. P. Dodin, D. I. Zinchenko, et al., Quantum Electron. 40, 400 (2010).ADSCrossRefGoogle Scholar
  9. 9.
    A. A. Andronov, E. P. Dodin, Yu. N. Nozdrin, Yu. N. Nozdrin, M. A. Ladugin, A. A. Marmalyuk, A. A. Padalitsa, V. A. Belyakov, I. V. Ladenkov, and A. G. Fefelov, JETP Lett. 102, 207 (2015).ADSCrossRefGoogle Scholar
  10. 10.
    D. O. Winge, M. Frianckie, and A. Wacker, AIP Adv. 6, 045025 (2016).ADSCrossRefGoogle Scholar
  11. 11.
    A. A. Andronov, E. P. Dodin, Yu. N. Nozdrin, et al., Electron. Lett. 52, 383 (2016).CrossRefGoogle Scholar
  12. 12.
    W. Terashima and H. Hirayama, in Proceeding of the SPIE Conference on Terahertz Physics, Devices, and Systems IX: Advanced Applications in Industry and Defense, Proc. SPIE 9483, 948304 (2015).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. A. Andronov
    • 1
  • A. V. Ikonnikov
    • 1
  • K. V. Maremianin
    • 1
  • V. I. Pozdnjakova
    • 1
  • Y. N. Nozdrin
    • 1
  • A. A. Marmalyuk
    • 2
  • A. A. Padalitsa
    • 2
  • M. A. Ladugin
    • 2
  • V. A. Belyakov
    • 3
  • I. V. Ladenkov
    • 3
  • A. G. Fefelov
    • 3
  1. 1.Institute for Physics of Microstructures RASNizhny NovgorodRussia
  2. 2.Sigm-PlusMoscowRussia
  3. 3.Federal Government Unitary Enterprise “Salut”Nizhny NovgorodRussia

Personalised recommendations