Skip to main content
Log in

Graphite/p-SiC Schottky Diodes Prepared by Transferring Drawn Graphite Films onto SiC

  • Physics of Semiconductor Devices
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

Graphite/p-SiC Schottky diodes are fabricated using the recently suggested technique of transferring drawn graphite films onto p-SiC single-crystal substrates. The current–voltage and capacitance–voltage characteristics are measured at different temperatures and at different frequencies of a small-signal AC signal, respectively. The temperature dependences of the potential-barrier height and of the series resistance of the graphite/p-SiC junctions are measured and analyzed. The dominant mechanisms of the charge–carrier transport through the diodes are determined. It is shown that the dominant mechanisms of the transport of charge carriers through the graphite/p-Si Schottky diodes at a forward bias are multi-step tunneling recombination and tunneling described by the Newman formula (at high bias voltages). At reverse biases, the dominant mechanisms of charge transport are the Frenkel–Poole emission and tunneling. It is shown that the graphite/p-SiC Schottky diodes can be used as detectors of ultraviolet radiation since they have the open-circuit voltage Voc = 1.84 V and the short-circuit current density Isc = 2.9 mA/cm2 under illumination from a DRL 250-3 mercury–quartz lamp located 3 cm from the sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. E. Rollings, G.-H. Gweon, S. Y. Zhou, B. S. Mun, J. L. McChesney, B. S. Hussain, A. V. Fedorov, P. N. First, W. A. de Heer, and A. Lanzara, J. Phys. Chem. Sol. 67, 2172 (2006).

    Article  ADS  Google Scholar 

  2. S. Tongay, T. Schumann, X. Miao, B. R. Appleton, and A. F. Hebard, Carbon 49, 2033 (2011).

    Article  Google Scholar 

  3. S. V. Morozov, K. S. Novoselov, and A. K. Geim, Phys. Usp. 51, 744 (2008).

    Article  ADS  Google Scholar 

  4. R. T. Tung, Mater. Sci. Eng. B 35, 1 (2001).

    Article  Google Scholar 

  5. S. Tongay, T. Schumann, and A. F. Hebard, Appl. Phys. Lett. 95, 222103 (2009).

    Article  ADS  Google Scholar 

  6. A. L. Barry, B. Lehman, D. Fritsch, and D. Brauning, IEEE Trans. Nucl. Sci. 38, 1111 (1991).

    Article  ADS  Google Scholar 

  7. M. Bhatnagar, P. K. Mc Larty, and B. J. Baliga, IEEE Electron. Dev. Lett. 13, 501 (1992).

    Article  ADS  Google Scholar 

  8. V. V. Brus and P. D. Maryanchuk, Carbon 78, 613 (2014).

    Article  Google Scholar 

  9. S. Niyogi, E. Bekyarova, M. E. Itkis, J. L. McWilliams, M. A. Hamon, and R. C. Haddon, J. Am. Chem. Soc. 128, 7720 (2006).

    Article  Google Scholar 

  10. V. V. Brus, M. I. Ilashchuk, Z. D. Kovalyuk, P. D. Maryanchuk, K. S. Ulyanitsky, and B. N. Gritsyuk, Semiconductors 45, 1077 (2011).

    Article  ADS  Google Scholar 

  11. M. N. Solovan, P. D. Maryanchuk, V. V. Brus, and O. A. Parfenyuk, Inorg. Mater. 48, 1026 (2012).

    Article  Google Scholar 

  12. V. V. Brus, A. K. Kyaw, P. D. Maryanchuk, and J. Zhang, Photovolt.: Res. Appl. 23, 1526 (2015).

    Article  Google Scholar 

  13. B. L. Sharma and R. K. Purohit, Semiconductor Heterojunctions (Pergamon, Oxford, 1974).

    Google Scholar 

  14. A. L. Fahrenbruch and R. H. Bube, Fundamentals of Solar Cells. Photovoltaic Solar Energy Conversion (Academic, New York, 1983).

    Google Scholar 

  15. S. M. Sze and K. Ng. Kwok, Physics of Semiconductor Devices (Wiley, New Jersey, 2007).

    Google Scholar 

  16. A. G. Milnes and D. L. Feucht, Metal-Semiconductor Junctions (Academic, New York, 1972).

    Google Scholar 

  17. M. N. Solovan, V. V. Brus, P. D. Maryanchuk, M. I. Ilashchuk, and Z. D. Kovalyuk, Semicond. Sci. Techn. 30, 075006 (2015).

    Article  ADS  Google Scholar 

  18. A. R. Riben and D. L. Feucht, Solid State Electron. 9 (1055), 17 (1966).

    Google Scholar 

  19. A. R. Riben and D. L. Feucht, Int. J. Electron. 20, 583 (1966).

    Article  Google Scholar 

  20. M. N. Solovan, V. V. Brus, and P. D. Maryanchuk, Semiconductors 48, 219 (2014).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. N. Solovan.

Additional information

Original Russian Text © M.N. Solovan, G.O. Andrushchak, A.I. Mostovyi, T.T. Kovaliuk, V.V. Brus, P.D. Maryanchuk, 2018, published in Fizika i Tekhnika Poluprovodnikov, 2018, Vol. 52, No. 2, pp. 248–253.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solovan, M.N., Andrushchak, G.O., Mostovyi, A.I. et al. Graphite/p-SiC Schottky Diodes Prepared by Transferring Drawn Graphite Films onto SiC. Semiconductors 52, 236–241 (2018). https://doi.org/10.1134/S1063782618020185

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782618020185

Navigation