Skip to main content
Log in

Patterning approach for detecting defect in device manufacturing

  • Fabrication, Treatment, and Testing of Materials and Structures
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

Compact handheld devices which were a dream in the past are now a reality; this has been enabled by miniaturization of circuit architectures including power devices. Scaling down of the design feature sizes does come with a price with an increase in systematic defects during chip manufacturing. There are generally two methods of inline defect detection adopted to monitor the semiconductor device fabrication—optical inspection and electron beam inspection. The optical inspection uses ultra-violet and deep ultra-violet (UV/DUV) light to find patterning defects on the wafer. While the electron-beam inspection uses electron charge and discharge measurement to find electrical connection defects, both are a costly procedure in terms of resources and time. The physical limit of feature resolution of the optical source is now making the defect inspection job difficult in miniaturized application specific integrated circuit (ASIC). This study is designed to test the patterning optimization approach on both inspection platforms. Using hotspot analysis weak locations are identified in the full chip design, and then they are verified in the inline wafer inspection. The criterion for hot-spot determination is also discussed in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Jain, S. M. Alam, S. Pozder, and R. E. Jones, IET Comput. Digital Tech. 5, 169 (2011).

    Article  Google Scholar 

  2. T. Jhaveri, V. Rovner, Lars Liebmann, L. Pileggi, A. J. Strojwas, and J. D. Hibbeler, IEEE Trans. Comput.-Aided Des. Integrated Circuits Syst. 29, 509 (2010).

    Article  Google Scholar 

  3. Xu Yang, Li Xin, Hsiung Kan-Lin, S. Boyd, et al., in Proceedings of the 42nd Design Automation Conference, 2005, p. 632.

    Google Scholar 

  4. A. K. Wong, IEEE Des. Test Comput. 22, 206 (2005).

    Article  Google Scholar 

  5. A. Burmen, J. Puhan, and T. Tuma, in Proceedings of the 2003 IEEE International Conference on Industrial Technology, Vol. 2, p. 745.

  6. B. Duan, IETE Tech. Rev. 222, 11 (2012).

    Google Scholar 

  7. K. Veezhinathan, IETE Tech. Rev. 241, 11 (2012).

    Google Scholar 

  8. A. Fontanelli, L. Arnone, R. Branca, and G. Mastrorocco, in Proceedings of the IEEE Conference on Quality Electronic Design ISQED, 2000, p. 121.

    Google Scholar 

  9. J.-l. Li, Q. Yan, and L. S. Melvin, J. Vacuum Sci. Technol. B 26, 1808 (2008).

    Article  ADS  Google Scholar 

  10. P. Gupta, A. B. Kahng, Park Chul-Hong, K. Samadi, and X. Xu, IEEE Trans. Comput.-Aided Des. Integrated Circuits Syst. 25, 2747 (2006).

    Article  Google Scholar 

  11. J. Li, L. Zhang, Q. Yan, L. S. Melvin, Ch.k Lin, E. Su, and N. Tang, J. Vacuum Sci. Technol. B 28, C619 (2010).

    Article  ADS  Google Scholar 

  12. K. Lucas, C.-M. Yuan, R. Boone, K. Wimmer, K. Strozewski, and O. Toublan, IEEE Des. Test Comput. 23, 30 (2006).

    Article  Google Scholar 

  13. G. Klein, L. Kohler, J. Wiseman, B. Dunham, Anh-Thu Tran, S. Brown, M. Shingo, and I. Burki, in Proceedings of the International Symposium on Semiconductor Manufacturing ISSM, 2007, p. 1–5.

    Google Scholar 

  14. H. Goel and D. Dance, in Proceedings of the Advanced Semiconductor Manufacturing Conference and Workshop, 2003, p. 262.

    Google Scholar 

  15. S. R. Nassif, in Proceedings of the Asia and South Pacific Design Automation Conference ASPDAC, 2008, p. 219.

    Google Scholar 

  16. J. C. le Denmat, V. Charbois, M. C. Luche, G. Kerrien, L. Couturier, L. Karsenti, and M. Geshel, in Proceedings of the Advanced Semiconductor Manufacturing Conference, 2009, p. 5.

    Google Scholar 

  17. S. Mitra, K. Brelsford, Young Moon Kim, H.-H. K. Lee, and Y. Li, IEEE J. Emerging Sel. Top. Circuits Syst. 1, 30 (2011).

    Article  Google Scholar 

  18. C. Young, H. Liu, S. F. Tzou, D. Tsui, A. Tsai, and E. Chang, in Proceedings of the International Symposium on Semiconductor Manufacturing ISSM, 2007, p. 1–3.

    Google Scholar 

  19. Wu Miao, W. Wang, Tian Li, Wu Chunlei, and Fan Diwei, in Proceedings of the IEEE International Conference on Semiconductor Electronics ICSE, 2012, p. 440.

    Google Scholar 

  20. Luo Jianfeng, Su Qing, C. Chiang, and J. Kawa, in Proceedings of the IEEE/ACM International Conference on Computer-Aided Design ICCAD, 2005, p. 133.

    Google Scholar 

  21. Hee Lee Jang, Jin Yu Song, and Chan Park Sang, IEEE Trans. Robot. Autom. 17, 637 (2001).

    Article  Google Scholar 

  22. J.-L. Baltzinger, S. Desmercieres, S. Lasserre, P. Champonnois, and M. Mercier, in Proceedings of the IEEE Conference and Workshop on Advanced Semiconductor Manufacturing ASMC’04, 2004, p. 359.

    Google Scholar 

  23. W. van Hans and K. van Luttervelt Vliet, Int. J. Comput. Integrated Manuf. 17, 224 (2004).

    Article  Google Scholar 

  24. S. Vinodh and D. Rajanayagam, Int. J. Sustainable Eng. 3, 292 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vineeta Agarwal.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vikram, A., Agarwal, V. Patterning approach for detecting defect in device manufacturing. Semiconductors 51, 1661–1665 (2017). https://doi.org/10.1134/S1063782617120193

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782617120193

Navigation