, Volume 51, Issue 6, pp 766–776 | Cite as

Classical magnetoresistance of a two-component system induced by thermoelectric effects

  • P. S. AlekseevEmail author
  • I. V. Gornyi
  • A. P. Dmitriev
  • V. Yu. Kachorovskii
  • M. A. Semina
Semiconductor Structures, Low-Dimensional Systems, and Quantum Phenomena


Magnetotransport in a two-dimensional two-component system consisting of electrons and holes with the same concentrations is studied. Balance equations to describe charge carrier and heat transfer are derived from the classical kinetic equation. The charge-carrier density and temperature distributions and electric-current densities are calculated by solving the balance equations for a long strip sample. In a sufficiently high magnetic field, regions of increased and decreased charge-carrier density, temperature, and fluxes are formed near the sample edges. This leads to nontrivial positive magnetoresistance.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. T. Hatke, M. A. Zudov, J. L. Reno, L. N. Pfeiffer, and K. W. West, Phys. Rev. B 85, 081304 (2012).ADSCrossRefGoogle Scholar
  2. 2.
    R. G. Mani, A. Kriisa, and W. Wegscheider, Sci. Rep. 3, 2747 (2013).ADSCrossRefGoogle Scholar
  3. 3.
    L. Bockhorn, P. Barthold, D. Schuh, W. Wegscheider, and R. J. Haug, Phys. Rev. B 83, 113301 (2011).ADSCrossRefGoogle Scholar
  4. 4.
    Q. Shi, P. D. Martin, Q. A. Ebner, M. A. Zudov, L. N. Pfeiffer, and K. W. West, Phys. Rev. B 89, 201301 (2014).ADSCrossRefGoogle Scholar
  5. 5.
    I. A. Dmitriev, A. D. Mirlin, D. G. Polyakov, and M. A. Zudov, Rev. Mod. Phys. 84, 1709 (2012).ADSCrossRefGoogle Scholar
  6. 6.
    A. L. Friedman, J. L. Tedesco, P. M. Campbell, J. C. Culbertson, E. Aifer, F. K. Perkins, R. L. Myers-Ward, J. K. Hite, C. R. Eddy, G. G. Jernigan, and D. K. Gaskill, Nano Lett. 10, 3962 (2010).ADSCrossRefGoogle Scholar
  7. 7.
    R. S. Singh, X. Wang, W. C. Ariando, and A. T. S. Wee, Appl. Phys. Lett. 101, 183105 (2012).ADSCrossRefGoogle Scholar
  8. 8.
    M. Veldhorst, M. Snelder, M. Hoek, C. G. Molenaar, D. P. Leusink, A. A. Golubov, H. Hilgenkamp, and A. Brinkman, Phys. Status Solidi RRL 7, 26 (2013).CrossRefGoogle Scholar
  9. 9.
    W. Wang, Y. Du, G. Xu, X. Zhang, E. Liu, Z. Liu, Y. Shi, J. Chen, G. Wu, and X. Zhang, Sci. Rep. 3, 2181 (2013).ADSCrossRefGoogle Scholar
  10. 10.
    G. M. Gusev, E. B. Olshanetsky, Z. D. Kvon, N. N. Mikhailov, and S. A. Dvoretsky, Phys. Rev. B 87, 081311 (2013).ADSCrossRefGoogle Scholar
  11. 11.
    F. Kisslinger, C. Ott, C. Heide, E. Kampert, B. Butz, E. Spiecker, S. Shallcross, and H. B. Weber, Nat. Phys. 11, 650 (2015).CrossRefGoogle Scholar
  12. 12.
    S. Wiedmann, A. Jost, C. Thienel, C. Brune, P. Leubner, H. Buhmann, L. W. Molenkamp, J. C. Maan, and U. Zeitler, Phys. Rev. B 91, 205311 (2015).ADSCrossRefGoogle Scholar
  13. 13.
    C. M. Wang and X. L. Lei, Phys. Rev. B 92, 125303 (2015).ADSCrossRefGoogle Scholar
  14. 14.
    G. Yu. Vasileva, D. Smirnov, Yu. L. Ivanov, Yu. B. Vasilyev, P. S. Alekseev, A. P. Dmitriev, I. V. Gornyi, V. Yu. Kachorovskii, M. Titov, B. N. Narozhny, and R. J. Haug, Phys. Rev. B 93, 195430 (2016).ADSCrossRefGoogle Scholar
  15. 15.
    The Quantum Hall Effect, Ed. by R. E. Prange and S. M. Girvin, Graduate Texts in Contemporary Physics) (Yale Univ. Press, New Haven, 1990).Google Scholar
  16. 16.
    Y. M. Galperin, Quantum Transport, Lecture Notes (Lund Univ., 1998).Google Scholar
  17. 17.
    Y. V. Nazarov and Y. M. Blanter, Quantum Transport, Introduction to Nanoscience (Cambridge Univ. Press, New York, 2009).CrossRefGoogle Scholar
  18. 18.
    A. D. Mirlin, D. G. Polyakov, F. Evers, and P. Wolfle, Phys. Rev. Lett. 87, 126805 (2001).ADSCrossRefGoogle Scholar
  19. 19.
    A. Dmitriev, M. Dyakonov, and R. Jullien, Phys. Rev. B 64, 233321 (2001).ADSCrossRefGoogle Scholar
  20. 20.
    V. V. Cheianov, A. P. Dmitriev, and V. Y. Kachorovskii, Phys. Rev. B 68, 201304 (2003).ADSCrossRefGoogle Scholar
  21. 21.
    Y. M. Beltukov and M. I. Dyakonov, Phys. Rev. Lett. 116, 176801 (2016).ADSCrossRefGoogle Scholar
  22. 22.
    P. S. Alekseev, A. P. Dmitriev, I. V. Gornyi, V. Y. Kachorovskii, B. N. Narozhny, M. Schütt, and M. Titov, Phys. Rev. Lett. 114, 156601 (2015).ADSCrossRefGoogle Scholar
  23. 23.
    B. N. Narozhny, I. V. Gornyi, M. Titov, M. Schütt, and A. D. Mirlin, Phys. Rev. B 91, 035414 (2015).ADSCrossRefGoogle Scholar
  24. 24.
    M. Hruska and B. Spivak, Phys. Rev. B 65, 033315 (2002).ADSCrossRefGoogle Scholar
  25. 25.
    P. S. Alekseev, Phys. Rev. Lett. 117, 166601 (2016).ADSCrossRefGoogle Scholar
  26. 26.
    M. V. Cheremisin, J. Exp. Theor. Phys. 92, 357 (2001).ADSCrossRefGoogle Scholar
  27. 27.
    M. V. Cheremisin, Physica E 27, 151 (2005).ADSCrossRefGoogle Scholar
  28. 28.
    M. V. Cheremisin, J. Exp. Theor. Phys. 100, 597 (2005).ADSCrossRefGoogle Scholar
  29. 29.
    M. V. Cheremisin, Physica E 27, 151 (2005).ADSCrossRefGoogle Scholar
  30. 30.
    V. Karpus, Sov. Phys. Semicond. 20, 6 (1986).Google Scholar
  31. 31.
    P. S. Alekseev, M. S. Kipa, V. I. Perel, and I. N. Yassievich, J. Exp. Theor. Phys. 106, 806 (2008).ADSCrossRefGoogle Scholar
  32. 32.
    M. S. Keepa, P. S. Alekseev, and I. N. Yassievich, Semiconductors 44, 198 (2010).ADSCrossRefGoogle Scholar
  33. 33.
    P. S. Alekseev, A. P. Dmitriev, I. V. Gornyi, and V. Y. Kachorovskii, Phys. Rev. B 87, 65432 (2013)CrossRefGoogle Scholar
  34. 33a.
    G. Y. Vasil’eva, P. S. Alekseev, Y. L. Ivanov, et al., JETP Lett. 96, 471 (2012).ADSCrossRefGoogle Scholar
  35. 34.
    M. M. Müller and S. Sachdev, Phys. Rev. B 78, 115419 (2008)ADSCrossRefGoogle Scholar
  36. 34a.
    M. S. Foster and I. L. Aleiner, Phys. Rev. B 79, 085415 (2009)ADSCrossRefGoogle Scholar
  37. 34b.
    D. Svintsov, V. Vyurkov, S. Yurcenko, T. Otsuji, and V. Ryzhii, J. Appl. Phys. 111, 083715 (2012).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • P. S. Alekseev
    • 1
    Email author
  • I. V. Gornyi
    • 1
    • 2
    • 3
  • A. P. Dmitriev
    • 1
  • V. Yu. Kachorovskii
    • 1
  • M. A. Semina
    • 1
  1. 1.Ioffe InstituteRussian Academy of SciencesSt. PetersburgRussia
  2. 2.Institut für NanotechnologieKarlsruhe Institute of TechnologyKarlsruheGermany
  3. 3.Institut für Theorie der Kondensierten MaterieKarlsruhe Institute of TechnologyKarlsruheGermany

Personalised recommendations