On the high charge-carrier mobility in polyaniline molecular channels in nanogaps between carbon nanotubes

Abstract

This study is devoted to the fabrication of molecular semiconductor channels based on polymer molecules with nanoscale electrodes made of single-walled carbon nanotubes. A reproducible technology for forming nanoscale gaps in carbon nanotubes using a focused Ga+ ion beam is proposed. Polyaniline molecules are deposited into nanogaps up to 30 nm wide between nanotubes by electrophoresis from N-methyl-2-pyrrolidone solution. As a result, molecular organic transistors are fabricated, in which the field effect is studied and the molecular-channel mobility is determined as 0.1 cm2/(V s) at an on/off current ratio of 5 × 102.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    B. Capozzi, J. Xia, O. Adak, E. J. Dell, Z. F. Liu, J. C. Taylor, J. B. Neaton, L. M. Campos, and L. Venkataraman, Nat. Nanotech. 10, 522 (2015).

    ADS  Article  Google Scholar 

  2. 2.

    M. L. Perrin, E. Burzuri, and H. S. J. Zant, Chem. Soc. Rev. 44, 902 (2015).

    Article  Google Scholar 

  3. 3.

    W.-Y. Lo, W. Bi, L. Li, I. H. Jung, and L. Yu, Nano Lett. 15, 958 (2015).

    ADS  Article  Google Scholar 

  4. 4.

    N. A. Bruque, M. K. Ashraf, G. J. O. Beran, T. R. Helander, and R. K. Lake, Phys. Rev. B 80, 155455 (2009).

    ADS  Article  Google Scholar 

  5. 5.

    C. Thiele, H. Vieker, A. Beyer, B. S. Flavel, F. Hennrich, D. M. Torres, T. R. Eaton, M. Mayor, M. M. Kappes, A. Gölzhäuser, H. V. Löhneysen, and R. Krupke, Appl. Phys. Lett. 104, 103102 (2014).

    ADS  Article  Google Scholar 

  6. 6.

    C. M. Aguirre, C. Ternon, M. Paillet, P. Desjardins, and R. Martel, Nano Lett. 9, 1457 (2009).

    ADS  Article  Google Scholar 

  7. 7.

    I. I. Bobrinetskii, V. K. Nevolin, and A. V. Romashkin, Semiconductors 46, 1593 (2012).

    ADS  Article  Google Scholar 

  8. 8.

    A. Moisala, A. G. Nasibulin, D. P. Brown, H. Jiang, L. Khriachtchev, and E. I. Kauppinen, Chem. Eng. Sci. 61, 4393 (2006).

    Article  Google Scholar 

  9. 9.

    K. Maehashi, H. Ozaki, Y. Ohno, K. Inoue, K. Matsumoto, S. Seki, and S. Tagawa, Appl. Phys. Lett. 90, 023103 (2007).

    ADS  Article  Google Scholar 

  10. 10.

    K. M. Molapo, P. M. Ndangili, R. F. Ajayi, G. Mbambisa, S. M. Mailu, N. Njomo, M. Masikini, P. Baker, and E. I. Iwuoha, Int. J. Electrochem. Sci. 7, 11859 (2012).

    Google Scholar 

  11. 11.

    O. Kwon and M. L. McKee, J. Phys. Chem. B 104, 1686 (2000).

    Article  Google Scholar 

  12. 12.

    Z. Fan, D. Wang, P. C. Chang, W. Y. Tseng, and J. G. Lu, Appl. Phys. Lett. 85, 5923 (2004).

    ADS  Article  Google Scholar 

  13. 13.

    D. Chen, S. Lei, and Y. Chen, Sensors 11, 6509 (2011).

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. V. Emelianov.

Additional information

Original Russian Text © A.V. Emelianov, A.V. Romashkin, K.A. Tsarik, A.G. Nasibulin, V.K. Nevolin, I.I. Bobrinetskiy, 2017, published in Fizika i Tekhnika Poluprovodnikov, 2017, Vol. 51, No. 4, pp. 512–516.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Emelianov, A.V., Romashkin, A.V., Tsarik, K.A. et al. On the high charge-carrier mobility in polyaniline molecular channels in nanogaps between carbon nanotubes. Semiconductors 51, 488–491 (2017). https://doi.org/10.1134/S1063782617040030

Download citation