, Volume 51, Issue 4, pp 488–491 | Cite as

On the high charge-carrier mobility in polyaniline molecular channels in nanogaps between carbon nanotubes

  • A. V. EmelianovEmail author
  • A. V. Romashkin
  • K. A. Tsarik
  • A. G. Nasibulin
  • V. K. Nevolin
  • I. I. Bobrinetskiy
Carbon Systems


This study is devoted to the fabrication of molecular semiconductor channels based on polymer molecules with nanoscale electrodes made of single-walled carbon nanotubes. A reproducible technology for forming nanoscale gaps in carbon nanotubes using a focused Ga+ ion beam is proposed. Polyaniline molecules are deposited into nanogaps up to 30 nm wide between nanotubes by electrophoresis from N-methyl-2-pyrrolidone solution. As a result, molecular organic transistors are fabricated, in which the field effect is studied and the molecular-channel mobility is determined as 0.1 cm2/(V s) at an on/off current ratio of 5 × 102.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. Capozzi, J. Xia, O. Adak, E. J. Dell, Z. F. Liu, J. C. Taylor, J. B. Neaton, L. M. Campos, and L. Venkataraman, Nat. Nanotech. 10, 522 (2015).ADSCrossRefGoogle Scholar
  2. 2.
    M. L. Perrin, E. Burzuri, and H. S. J. Zant, Chem. Soc. Rev. 44, 902 (2015).CrossRefGoogle Scholar
  3. 3.
    W.-Y. Lo, W. Bi, L. Li, I. H. Jung, and L. Yu, Nano Lett. 15, 958 (2015).ADSCrossRefGoogle Scholar
  4. 4.
    N. A. Bruque, M. K. Ashraf, G. J. O. Beran, T. R. Helander, and R. K. Lake, Phys. Rev. B 80, 155455 (2009).ADSCrossRefGoogle Scholar
  5. 5.
    C. Thiele, H. Vieker, A. Beyer, B. S. Flavel, F. Hennrich, D. M. Torres, T. R. Eaton, M. Mayor, M. M. Kappes, A. Gölzhäuser, H. V. Löhneysen, and R. Krupke, Appl. Phys. Lett. 104, 103102 (2014).ADSCrossRefGoogle Scholar
  6. 6.
    C. M. Aguirre, C. Ternon, M. Paillet, P. Desjardins, and R. Martel, Nano Lett. 9, 1457 (2009).ADSCrossRefGoogle Scholar
  7. 7.
    I. I. Bobrinetskii, V. K. Nevolin, and A. V. Romashkin, Semiconductors 46, 1593 (2012).ADSCrossRefGoogle Scholar
  8. 8.
    A. Moisala, A. G. Nasibulin, D. P. Brown, H. Jiang, L. Khriachtchev, and E. I. Kauppinen, Chem. Eng. Sci. 61, 4393 (2006).CrossRefGoogle Scholar
  9. 9.
    K. Maehashi, H. Ozaki, Y. Ohno, K. Inoue, K. Matsumoto, S. Seki, and S. Tagawa, Appl. Phys. Lett. 90, 023103 (2007).ADSCrossRefGoogle Scholar
  10. 10.
    K. M. Molapo, P. M. Ndangili, R. F. Ajayi, G. Mbambisa, S. M. Mailu, N. Njomo, M. Masikini, P. Baker, and E. I. Iwuoha, Int. J. Electrochem. Sci. 7, 11859 (2012).Google Scholar
  11. 11.
    O. Kwon and M. L. McKee, J. Phys. Chem. B 104, 1686 (2000).CrossRefGoogle Scholar
  12. 12.
    Z. Fan, D. Wang, P. C. Chang, W. Y. Tseng, and J. G. Lu, Appl. Phys. Lett. 85, 5923 (2004).ADSCrossRefGoogle Scholar
  13. 13.
    D. Chen, S. Lei, and Y. Chen, Sensors 11, 6509 (2011).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • A. V. Emelianov
    • 1
    Email author
  • A. V. Romashkin
    • 1
  • K. A. Tsarik
    • 1
  • A. G. Nasibulin
    • 2
    • 3
  • V. K. Nevolin
    • 1
  • I. I. Bobrinetskiy
    • 1
  1. 1.National Research University of Electronic Technology (MIET)MoscowRussia
  2. 2.Skolkovo Institute of Science and TechnologyMoscowRussia
  3. 3.Department of Applied PhysicsAalto University School of ScienceEspooFinland

Personalised recommendations