, Volume 51, Issue 2, pp 207–212 | Cite as

Structural studies of ZnS:Cu (5 at %) nanocomposites in porous Al2O3 of different thicknesses

  • R. G. ValeevEmail author
  • A. L. Trigub
  • A. I. Chukavin
  • A. N. Beltiukov
Microcrystalline, Nanocrystalline, Porous, and Composite Semiconductors


We present EXAFS, XANES, and X-ray diffraction data on nanoscale ZnS:Cu (5 at %) structures fabricated by the thermal deposition of a ZnS and Cu powder mixture in porous anodic alumina matrices with a pore diameter of 80 nm and thicknesses of 1, 3, and 5 μm. The results obtained are compared with data on ZnS:Cu films deposited onto a polycor surface. According to X-ray diffraction data, the samples contain copper and zinc compounds with sulfur (Cu2S and ZnS, respectively); the ZnS compound is in the cubic (sphalerite) and hexagonal (wurtzite) modifications. EXAFS and XANES studies at the K absorption edges of zinc and copper showed that, in samples deposited onto polycor and alumina with thicknesses of 3 and 5 μm, most copper atoms form the Cu2S compound, while, in the sample deposited onto a 1-μm-thick alumina layer, copper atoms form metallic particles on the sample surface. Copper crystals affect the Zn–S interatomic distance in the sample with a 1-μm-thick porous Al2O3 layer; this distance is smaller than in the other samples.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    O. V. Maksimova and M. K. Samokhvalov, Development of Analysis and Synthesis Methods of Thin Film Electroluminescent Elements in Indicator Devices (Ul’yan. Gos. Tekh. Univ., Ul’yanovsk, 2010), Chap. 2, p. 26 [in Russian].Google Scholar
  2. 2.
    Yu. Yu. Bacherikov and N. V. Kitsyuk, Tech. Phys. 50, 658 (2005).CrossRefGoogle Scholar
  3. 3.
    I. K. Vereshchagin, B. A. Kovalev, L. A. Kosyachenko, and S. M. Kokin, Electroluminescent Light Sources (Energoatomizdat, Moscow, 1990), Chap. 3, p. 87 [in Russian].Google Scholar
  4. 4.
    R. G. Valeev, D. I. Petukhov, A. I. Chukavin, and A. N. Beltukov, Semiconductors 50, 266 (2016).ADSCrossRefGoogle Scholar
  5. 5.
    X. Fang, T. Zhai, U. K. Gautam, L. Li, L. Wu, Y. Bando, and D. Goldberg, Prog. Mater. Sci. 56, 175 (2011).CrossRefGoogle Scholar
  6. 6.
    C. T. Sousa, D. C. Leitao, M. P. Proenca, J. Ventura, A. M. Pereira, and J. P. Araujo, Appl. Phys. Rev. 1, 031102 (2014).ADSCrossRefGoogle Scholar
  7. 7.
    F. Bentaleb and E. Marceau, Microporous Mesoporous Mater. 156, 40 (2012).CrossRefGoogle Scholar
  8. 8.
    R. Valeev, E. Romanov, A. Beltukov, V. Mukhgalin, I. Roslyakov, and A. Eliseev, Phys. Status Solidi C 9, 1462 (2012).ADSCrossRefGoogle Scholar
  9. 9.
    D. Botez and D. R. Scifres, Diod Laser Arrays (Cambridge Univ. Press, Cambridge, 2005), p. 411.Google Scholar
  10. 10.
    R. G. Valeev, D. V. Surnin, A. N. Bel’tyukov, V. M. Vetoshkin, V. V. Kriventsov, Ya. V. Zubavichus, A. A. Eliseev, and N. A. Mezentsev, J. Struct. Chem. 51, S132 (2010).CrossRefGoogle Scholar
  11. 11.
    A. Beltukov, R. Valeev, E. Romanov, and V. Mukhgalin, Phys. Status Solidi C 11, 1452 (2014).CrossRefGoogle Scholar
  12. 12.
    D. I. Petukhov, K. S. Napolskii, M. V. Berekchiyan, A. G. Lebedev, and A. A. Eliseev, ACS Appl. Mater. Interfaces 5, 7819 (2013).CrossRefGoogle Scholar
  13. 13.
    Y. Lin, Q. Lin, X. Liu, Y. Gao, J. He, W. Wang, and Z. Fan, Nanoscale Res. Lett. 10, 495 (2015).ADSCrossRefGoogle Scholar
  14. 14.
    M. Newville, J. Synchrotr. Rad. 8, 322 (2001).CrossRefGoogle Scholar
  15. 15.
    S. I. Zabinsky, J. J. Rehr, A. Ankudinov, R. C. Albers, and M. J. Eller, Phys. Rev. B 52, 2995 (1995).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • R. G. Valeev
    • 1
    Email author
  • A. L. Trigub
    • 1
    • 2
  • A. I. Chukavin
    • 1
  • A. N. Beltiukov
    • 1
  1. 1.Physical-Technical Institute, Russian Academy of Sciences (Ural Branch)IzhevskRussia
  2. 2.National Research Center “Kurchatov Institute”MoscowRussia

Personalised recommendations