Semiconductors

, Volume 50, Issue 13, pp 1738–1743 | Cite as

Surface functionalization of single-layer and multilayer graphene upon ultraviolet irradiation

  • D. D. Levin
  • I. I. Bobrinetskiy
  • A. V. Emelianov
  • V. K. Nevolin
  • A. V. Romashkin
  • V. A. Petuhov
Nanotechnology
  • 30 Downloads

Abstract

The process of oxidation of single-layer and multilayer graphene films upon ultraviolet irradiation of the structure in water vapor was studied. The systematic features and distinctions between changes in the topographic and optical properties of graphene films composed of different numbers of layers were established. The possibility of surface functionalization accompanied by modification of the energy structure of graphene was shown. Differences between single-layer and multilayer graphene films in the mechanisms of oxidation on ultraviolet irradiation are discussed and analyzed. Correlation of the topographic imperfections of the properties of the graphene material with its structural defects observed in Raman spectra was shown.

Keywords

graphene atomic-force microscopy mechanical exfoliation of graphite Raman scattering oxidation upon UV irradiation doping 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Stolyarova et al., Proc. Natl. Acad. Sci. USA 104, 9209 (2007).ADSCrossRefGoogle Scholar
  2. 2.
    M. S. Fuhrer et al., Nano Lett. 7, 1643 (2007).ADSCrossRefGoogle Scholar
  3. 3.
    H. Tao, J. Moser, F. Alzina, et al., J. Phys. Chem. 115, 18257 (2011).CrossRefGoogle Scholar
  4. 4.
    F Gunes, G. H. Han, H. J. Shin, et al., NANO: Brief Rep. Rev. 6, 409 (2011).CrossRefGoogle Scholar
  5. 5.
    J. M. Simmons, B. M. Nichols, S. E. Baker, et al., J. Phys. Chem. 110, 7113 (2006).CrossRefGoogle Scholar
  6. 6.
    L. M. Gomez, A. Kumar, Y. Zhang, et al., Nano Lett. 9, 3592 (2009).ADSCrossRefGoogle Scholar
  7. 7.
    W. Li, Y. Liang, D. Yu, L. Peng, et al., Appl. Phys. Lett. 102, 183110 (2013).ADSCrossRefGoogle Scholar
  8. 8.
    G. Williams, B. Seger, and P. V. Kamat, ACS Nano 2, 1487 (2008).CrossRefGoogle Scholar
  9. 9.
    K. S. Novoselov, A. K. Geim, S. V. Morozov, et al., Science 306 (5696), 666 (2004).ADSCrossRefGoogle Scholar
  10. 10.
    L. Liu, S. Ryu, M. R. Tomasik, et al., Nano Lett. 8, 1965 (2008).ADSCrossRefGoogle Scholar
  11. 11.
    M. M. Filippov, Tr. Karel. Nauch. Tsentra RAN, No. 1, 115 (2014).Google Scholar
  12. 12.
    A. C. Ferrari, J. C. Meyer, V. Scardaci, et al., Phys. Rev. Lett. 97, 187401 (2006).ADSCrossRefGoogle Scholar
  13. 13.
    M. F. Khan et al., Sci. Technol. Adv. Mater. 15, 5404 (2014).CrossRefGoogle Scholar
  14. 14.
    K. N. Kudin et al., Nano Lett. 8, 36 (2008).ADSCrossRefGoogle Scholar
  15. 15.
    K. S. Novoselov, A. C. Ferrari, et al., ACS Nano 4, 5617 (2010).CrossRefGoogle Scholar
  16. 16.
    S. Some, Y. Kim, Y. Yoon, et al., Sci. Rep. 3, 1929 (2013).ADSGoogle Scholar
  17. 17.
    J. C. Meyer, A. K. Geim, et al., Nature 446, 60 (2007).ADSCrossRefGoogle Scholar
  18. 18.
    X. Hong, S.-H. Cheng, C. Herding, and J. Zhu, Phys. Rev. B 83, 085410 (2011).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • D. D. Levin
    • 1
  • I. I. Bobrinetskiy
    • 1
  • A. V. Emelianov
    • 1
  • V. K. Nevolin
    • 1
  • A. V. Romashkin
    • 1
  • V. A. Petuhov
    • 1
  1. 1.National Research University of Electronic Technology MIETZelenograd, MoscowRussia

Personalised recommendations