Terahertz response of DNA oligonucleotides on the surface of silicon nanostructures

Abstract

The possibility of identifying DNA oligonucleotides deposited onto the region of the edge channels of silicon nanostructures is considered. The role of various THz (terahertz) radiation harmonics of silicon nanostructures in the resonance response of oligonucleotides is analyzed. In particular, this makes it possible to compare single-stranded 100_ and 50_mer DNA oligonucleotides. A technique for the rapid identification of different oligonucleotides by measuring changes in the conductance and transverse potential difference of silicon nanostructures with microcavities, embedded in the edge channels for selecting THz radiation characteristics, is proposed.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    R. Higuchi, C. Fockler, G. Dollinger, and R. Watson, Nat. Biotechnol. 11, 1026 (1993).

    Article  Google Scholar 

  2. 2.

    M. K. Udvardi, T. Czechowski, and W. R. Scheible, Plant Cell 20, 1736 (2008).

    Article  Google Scholar 

  3. 3.

    H. D. VanGuilder, K. E. Vrana, and W. M. Freeman, BioTechniques 44, 619 (2008).

    Article  Google Scholar 

  4. 4.

    J. Liu, C. Liu, and W. He, Curr. Org. Chem. 17, 564 (2013).

    Article  Google Scholar 

  5. 5.

    E. R. Mardis, Ann. Rev. Anal. Chem. 6, 287 (2013).

    Article  Google Scholar 

  6. 6.

    J. M. Rothberg et al., Nature 475, 348 (2011).

    Article  Google Scholar 

  7. 7.

    C. Toumazou et al., Nat. Methods 10, 641 (2013).

    Article  Google Scholar 

  8. 8.

    R. E. Webb, Electron. Eng. 37, 803 (1965).

    Google Scholar 

  9. 9.

    I. Lundstrom, M. S. Shivaraman, C. S. Svenson, and L. Lundkvist, Appl. Phys. Lett. 26, 55 (1975).

    ADS  Article  Google Scholar 

  10. 10.

    P. Bergveld, Sens. Actuators B 88, 1 (2003).

    Article  Google Scholar 

  11. 11.

    C. S. Lee, S. K. Kim, and M. Kim, Sensors 9, 7111 (2009).

    Article  Google Scholar 

  12. 12.

    C. Plesa, N. van Loo, and C. Dekker, Nanoscale 7, 13605 (2015).

    ADS  Article  Google Scholar 

  13. 13.

    M. Wanunu, Phys. Life Rev. 9, 125 (2012).

    ADS  Article  Google Scholar 

  14. 14.

    M. Jain, I. T. Fiddes, K. H. Miga, H. E. Olsen, B. Paten, and M. Akeson, Nat. Methods 12, 351 (2015).

    Article  Google Scholar 

  15. 15.

    M. Muthukumar, C. Plesa, and C. Dekker, Phys. Today 68 (8), 40 (2015).

    Article  Google Scholar 

  16. 16.

    N. T. Bagraev A. Bouravleuv, W. Gehlhoff, L. Klyachkin, A. Malyarenko, and S. Rykov, Def. Dif. Forum 194, 673 (2001).

    Article  Google Scholar 

  17. 17.

    N. T. Bagraev, N. G. Galkin, W. Gehlhoff, L. E. Klyachkin, and A. M. Malyarenko, J. Phys.: Condens. Matter 20, 164202 (2008).

    ADS  Google Scholar 

  18. 18.

    N. T. Bagraev, A. D. Bouravlev, L. E. Klyachkin, A. M. Malyarenko, V. Gehlhoff, V. K. Ivanov, and I. A. Shelykh, Semiconductors 36, 439 (2002).

    ADS  Article  Google Scholar 

  19. 19.

    N. T. Bagraev, A. D. Bouravlev, L. E. Klyachkin, A. M. Malyarenko, V. Gehlhoff, Yu. I. Romanov, and S. A. Rykov, Semiconductors 39, 685 (2005).

    ADS  Article  Google Scholar 

  20. 20.

    N. T. Bagraev, W. Gehlhoff, L. E. Klyachkin, A. A. Kudryavtsev, A. M. Malyarenko, G. A. Oganesyan, D. S. Poloskin, and V. V. Romanov, Physica C 219, 437 (2006).

    Google Scholar 

  21. 21.

    N. T. Bagraev, V. A. Mashkov, E. Yu. Danilovsky, W. Gehlhoff, D. S. Gets, L. E. Klyachkin, A. A. Kudryavtsev, R. V. Kuzmin, A. M. Malyarenko, and V. V. Romanov, Appl. Magn. Reson. 39, 113 (2010).

    Article  Google Scholar 

  22. 22.

    N. T. Bagraev, E. Yu. Danilovsky, L. E. Klyachkin, A. M. Malyarenko, and V. A. Mashkov, Semiconductors 46, 75 (2012).

    ADS  Article  Google Scholar 

  23. 23.

    N. T. Bagraev, L. E. Klyachkin, A. A. Kudryavtsev, A. M. Malyarenko, and V. V. Romanov, in Superconductor, Ed. by A. Luiz (SCIYO, Rijeka, 2010), p.69.

  24. 24.

    N. T. Bagraev, V. Yu. Grigoryev, L. E. Klyachkin, A. M. Malyarenko, V. A. Mashkov, and V. V. Romanov, Fiz. Tekh. Poluprovodn. 50 (8) (2016, in press).

    Google Scholar 

  25. 25.

    A. L. Chernev, N. T. Bagraev, L. E. Klyachkin, A. K. Emel’yanov, and M. V. Dubina, Semiconductors 49, 944 (2015).

    ADS  Article  Google Scholar 

  26. 26.

    N. T. Bagraev, E. Yu. Danilovskii, and D. S. Gets, J. Phys.: Conf. Ser. 486, 012017 (2014).

    ADS  Google Scholar 

  27. 27.

    G. J. Thomas, Jr., Ann. Rev. Biophys. Biomol. Struct. 28, 1 (1999).

    ADS  Article  Google Scholar 

  28. 28.

    A. Barhoumi, D. Zhang, F. Tam, and N. G. Halas, J. Am. Chem. Soc. 130, 5523 (2008).

    Article  Google Scholar 

  29. 29.

    B. M. Fischer, M. Walther, and P. Jepsen, Phys. Med. Biol. 47, 3807 (2002).

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to N. T. Bagraev.

Additional information

Original Russian Text © N.T. Bagraev, A.L. Chernev, L.E. Klyachkin, A.M. Malyarenko, A.K. Emel’yanov, M.V. Dubina, 2016, published in Fizika i Tekhnika Poluprovodnikov, 2016, Vol. 50, No. 9, pp. 1230–1237.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bagraev, N.T., Chernev, A.L., Klyachkin, L.E. et al. Terahertz response of DNA oligonucleotides on the surface of silicon nanostructures. Semiconductors 50, 1208–1215 (2016). https://doi.org/10.1134/S1063782616090037

Download citation