Advertisement

Semiconductors

, Volume 50, Issue 8, pp 1125–1129 | Cite as

Changes in the conductivity of lead-selenide thin films after plasma etching

  • S. P. ZiminEmail author
  • I. I. Amirov
  • V. V. Naumov
Fabrication, Treatment, and Testing of Materials and Structures

Abstract

The conductivity of epitaxial n- and p-PbSe thin films after dry etching in radio-frequency highdensity low-pressure inductively coupled argon plasma at a bombarding-ion energy of 200 eV is studied. It is shown that the observed changes in the conductivity can be adequately interpreted in the context of the classical model of the generation of donor-type radiation defects and that the processes of post-irradiation vacuum annealing result in the removal of such defects. The mean free path of charge carriers in p-PbSe films is determined within the context of the Fuchs–Sondheimer theory. It is found that, at room temperature, this parameter is 16 and 32 nm for the specularity parameter 0 and 0.5, respectively.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lead Chalcogenides: Physics and Application, Ed. by D. Khokhlov (Taylor Francis, New York, 2003).Google Scholar
  2. 2.
    S. P. Zimin and E. S. Gorlachev, Nanostructured Lead Chalcogenides (Yarosl. Gos. Univ., Yaroslavl, 2011) [in Russian].Google Scholar
  3. 3.
    O. E. Semonin, J. M. Luther, and M. C. Beard, Mater. Today 15, 508 (2012).CrossRefGoogle Scholar
  4. 4.
    L. Zhang, Y. Zhang, S. V. Kershaw, Y. Zhao, Y. Wang, Y. Jiang, T. Zhang, W. W. Yu, P. Gu, Y. Wang, H. Zhang, and A. L. Rogach, Nanotechnology 25, 105704 (2014).ADSCrossRefGoogle Scholar
  5. 5.
    L. Etgar, E. Lifshitz, and R. Tannenbaum, J. Phys. Chem. C 111, 6238 (2007).CrossRefGoogle Scholar
  6. 6.
    J. Androulakis, I. Todorov, J. He, D.-Y. Chung, V. Dravid, and M. Kanatzidis, J. Am. Chem. Soc. 133, 10920 (2011).CrossRefGoogle Scholar
  7. 7.
    S. P. Zimin, E. S. Gorlachev, I. I. Amirov, and V. V. Naumov, Tech. Phys. Lett. 37, 929 (2011).ADSCrossRefGoogle Scholar
  8. 8.
    S. P. Zimin, E. S. Gorlachev, and I. I. Amirov, Semicond. Sci. Technol. 26, 55018 (2011).ADSCrossRefGoogle Scholar
  9. 9.
    M. Rahim, A. Khiar, M. Fill, F. Felder, and H. Zogg, Electron. Lett. 47, 1037 (2011).CrossRefGoogle Scholar
  10. 10.
    S. P. Zimin, E. S. Gorlachev, I. I. Amirov, and H. Zogg, J. Phys. D: Appl. Phys. 42, 165205 (2009).ADSCrossRefGoogle Scholar
  11. 11.
    L. Palmetshofer, Appl. Phys. A 34, 139 (1984).ADSCrossRefGoogle Scholar
  12. 12.
    R. L. Petritz, Phys. Rev. 110, 1254 (1958).ADSCrossRefGoogle Scholar
  13. 13.
    R. F. Egerton and C. Juhasz, Thin Solid Films 4, 239 (1969).ADSCrossRefGoogle Scholar
  14. 14.
    G. F. McLane and J. N. Zemel, Thin Solid Films 7, 229 (1971).ADSCrossRefGoogle Scholar
  15. 15.
    E. I. Rogacheva, O. N. Nashchekina, S. I. Ol’khovskaya, and M. S. Dresselkhaus, J. Termoelectric., No. 4, 25 (2012).Google Scholar
  16. 16.
    R. F. Zaikina, S. P. Zimin, Sh. Sh. Sarsembinov, and L. V. Bochkareva, Semiconductors 28, 1056 (1994).ADSGoogle Scholar
  17. 17.
    Handbook of Thin Film Technology, Ed. by L. I. Maissel and R. Glang (McGraw-Hill, New York, 1970), Vol.2.Google Scholar
  18. 18.
    M. H. Brodsky and J. N. Zemel, Phys. Rev. 155, 780 (1967).ADSCrossRefGoogle Scholar
  19. 19.
    O. A. Aleksandrova, R. Ts. Bondokov, I. V. Saunin, and Yu. M. Tairov, Semiconductors 32, 953 (1998).ADSCrossRefGoogle Scholar
  20. 20.
    O. A. Aleksandrova, A. T. Akhmedzhanov, R. Ts. Bondokov, V. A. Moshnikov, I. V. Saunin, Yu. M. Tairov, V. I. Shtanov, and L. V. Yashina, Semiconductors 34, 1365 (2000).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.Yaroslavl State UniversityYaroslavlRussia
  2. 2.Institute of Physics and Technology, Yaroslavl BranchRussian Academy of SciencesYaroslavlRussia

Personalised recommendations