, Volume 50, Issue 4, pp 502–507 | Cite as

Prediction of the stability and electronic properties of carbon nanotori synthesized by a high-voltage pulsed discharge in ethanol vapor

  • O. E. Glukhova
  • V. A. Kondrashov
  • V. K. Nevolin
  • I. I. Bobrinetsky
  • G. V. Savostyanov
  • M. M. Slepchenkov
Carbon Systems


An experimental technique for increasing the yield of carbon-nanotube nanotori using the modified arc synthesis method is proposed. New physical knowledge on the systematic features of the interrelation between the properties of nanotori and atomic-network topology are theoretically established for the first time. The experiments are performed based on new technology for synthesizing nanotori on nickel-catalyst particles by a high-voltage pulsed discharge in ethanol vapor and using atomic-force microscopy. Stability is predicted using an original procedure for calculating local atomic stresses. Simulation shows that the zigzag chirality corresponds to the most stable topology of nanotori. Using the tight binding method, it is shown that, depending on the chirality type, nanotori are divided into two classes, i.e., those with metal and semiconductor conductivity.


Ethanol Vapor Brenner Potential Occupied Electronic State Occupied Energy Level Zigzag Chirality 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. W. Kroto, J. R. Heath, S. C. Obrien, R. F. Curl, and R. E. Smalley, Nature 318, 162 (1985).ADSCrossRefGoogle Scholar
  2. 2.
    S. Iijima, Nature 354, 56 (1991).ADSCrossRefGoogle Scholar
  3. 3.
    B. I. Dunlap, Phys. Rev. B 46, 1933 (1992).ADSCrossRefGoogle Scholar
  4. 4.
    J. Liu, H. J. Dai, J. H. Hafner, D. T. Colbert, R. E. Smalley, S. J. Tans, and C. Dekker, Nature 385, 780 (1997).ADSCrossRefGoogle Scholar
  5. 5.
    N. Komatsu, T. Shimawaki, S. Aonuma, and T. Kimura, Carbon 44, 2093 (2006).CrossRefGoogle Scholar
  6. 6.
    J. Geng, Y. K. Ko, S. C. Youn, Y. H. Kim, S. A. Kim, D. H. Jung, and H. T. Jung, J. Phys. Chem. C 112, 12264 (2008).CrossRefGoogle Scholar
  7. 7.
    L. Song, L. Ci, L. Sun, C. Jin, L. Liu, W. Ma, D. Liu, X. Zhao, S. Luo, Z. Zhang, Y. Xiang, J. Zhou, W. Zhou, Y. Ding, Z. L. Wang, and S. Xie, Adv. Mater. 18, 1817 (2006).CrossRefGoogle Scholar
  8. 8.
    B. Sun and X. M. H. Huang, S. Afr. J. Mar. Sci. 104, 169 (2008).Google Scholar
  9. 9.
    C. P. Liu, H. B. Chen, and J. W. Ding, J. Phys.: Condens. Matter 20, 015206 (2008).ADSGoogle Scholar
  10. 10.
    B. Mukherjee, P. K. Maiti, C. Dasgupta, and A. K. Sood, ACS Nano 4, 985 (2010).CrossRefGoogle Scholar
  11. 11.
    K. T. Lau, M. Lu, and D. Hui, Composites, Part B 37, 437 (2006).CrossRefGoogle Scholar
  12. 12.
    L. Liu and Jijun Zhao, Syntheses and Applications of Carbon Nanotubes and their Composites (InTech, Croatia, 2013), p. 257.Google Scholar
  13. 13.
    O. E. Glukhova and A. S. Kolesnikova, Phys. Solid State 53, 1957 (2011).ADSCrossRefGoogle Scholar
  14. 14.
    S. J. Stuart, A. B. Tutein, and J. A. Harrison, J. Chem. Phys. 112, 6472 (2000).ADSCrossRefGoogle Scholar
  15. 15.
    Yang Wang, D. Tomanek, and G. F. Bertsh, Phys. Rev. B 44, 6562 (1991).ADSCrossRefGoogle Scholar
  16. 16.
    R. S. Ruoff, D. Qian, and W. K. Liu, C.R. Phys. 4, 993 (2003).ADSCrossRefGoogle Scholar
  17. 17.
    O. Glukhova and M. Slepchenkov, Nanoscale 11, 3335 (2012).ADSCrossRefGoogle Scholar
  18. 18.
    O. E. Glukhova, A. S. Kolesnikova, and M. M. Slepchenkov, J. Mol. Model. 19, 985 (2013).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • O. E. Glukhova
    • 1
  • V. A. Kondrashov
    • 2
  • V. K. Nevolin
    • 2
  • I. I. Bobrinetsky
    • 2
  • G. V. Savostyanov
    • 1
  • M. M. Slepchenkov
    • 1
  1. 1.Chernyshevsky Saratov State UniversitySaratovRussia
  2. 2.National Research University of Electronic Technology (MIET)ZelenogradRussia

Personalised recommendations