Advertisement

Semiconductors

, Volume 50, Issue 2, pp 217–221 | Cite as

Effect of transverse electric field on the longitudinal current–voltage characteristic of graphene superlattice

  • S. V. KryuchkovEmail author
  • E. I. Kukhar’
Carbon Systems

Abstract

The current density induced along the axis of graphene superlattice in the presence of ac and dc electric fields has been calculated. The dc electric field vector is assumed to have both transverse and longitudinal components with respect to the superlattice axis. The constant component of the current density is shown to oscillate with a change in the ac field amplitude. The longitudinal current–voltage characteristic of graphene superlattice contains a portion with negative differential conductivity. The maximum of the longitudinal current–voltage characteristic shifts to larger values of the longitudinal component of dc field with an increase in the transverse component of electric field.

Keywords

Transverse Electric Field Negative Differential Conductivity Graphene Superlattice Negative Effective Mass Superlattice Axis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. V. Kurganova, S. Wiedmann, A. J. M. Giesbers, R. V. Gorbachev, K. S. Novoselov, M. I. Katsnelson, T. Tudorovskiy, J. C. Maan, and U. Zeitler, Phys. Rev. B 87, 085447 (2013).CrossRefADSGoogle Scholar
  2. 2.
    Y. Kim, J. M. Poumirol, A. Lombardo, N. G. Kalugin, T. Georgiou, Y. J. Kim, K. S. Novoselov, A. C. Ferrari, J. Kono, O. Kashuba, V. I. Fal’ko, and D. Smirnov, Phys. Rev. Lett. 110, 227402 (2013).CrossRefADSGoogle Scholar
  3. 3.
    M. Titov, R. V. Gorbachev, B. N. Narozhny, T. Tudorovskiy, M. Schött, P. M. Ostrovsky, I. V. Gornyi, A. D. Mirlin, M. I. Katsnelson, K. S. Novoselov, A. K. Geim, and L. A. Ponomarenko, Phys. Rev. Lett. 111, 166601 (2013).CrossRefADSGoogle Scholar
  4. 4.
    G. L. Yu, R. V. Gorbachev, J. S. Tu, A. V. Kretinin, Y. Cao, R. Jalil, F. Withers, L. A. Ponomarenko, B. A. Piot, M. Potemski, D. C. Elias, X. Chen, K. Watanabe, T. Taniguchi, I. V. Grigorieva, K. S. Novoselov, V. I. Fal’ko, A. K. Geim, and A. Mishchenko, Nature Phys. 10, 525 (2014).CrossRefADSGoogle Scholar
  5. 5.
    R. V. Gorbachev, J. C. W. Song, G. L. Yu, A. V. Kretinin, F. Withers, Y. Cao, A. Mishchenko, I. V. Grigorieva, K. S. Novoselov, L. S. Levitov, and A. K. Geim, Science 346, 448 (2014).CrossRefADSGoogle Scholar
  6. 6.
    S. A. Mikhailov, Phys. Rev. B 79, 241309(R) (2009).CrossRefADSGoogle Scholar
  7. 7.
    D. S. L. Abergel, V. Apalkov, J. Berashevich, K. Ziegler, and T. Chakraborty, Adv. Phys. 59, 261 (2010).CrossRefADSGoogle Scholar
  8. 8.
    Y. Q. Wu, P. D. Ye, M. A. Capano, Y. Xuan, Y. Sui, M. Qi, J. A. Cooper, T. Shen, D. Pandey, G. Prakash, and R. Reifenberger, Appl. Phys. Lett. 92, 092102 (2008).CrossRefADSGoogle Scholar
  9. 9.
    L. Liao and X. Duan, Mater. Sci. Eng. R 70, 354 (2010).CrossRefGoogle Scholar
  10. 10.
    Z. Sun, T. Hasan, and A. C. Ferrari, Physica E 44, 1082 (2012).CrossRefADSGoogle Scholar
  11. 11.
    L. Liao and X. Duan, Mater. Today 15, 328 (2012).CrossRefGoogle Scholar
  12. 12.
    D. A. Svintsov, V. V. Vyurkov, V. F. Lukichev, A. A. Orlikovsky, A. Burenkov, and R. Oechsner, Semiconductors 47, 279 (2013).CrossRefADSGoogle Scholar
  13. 13.
    S. A. Mikhailov, Phys. Rev. B 87, 115405 (2013).CrossRefADSGoogle Scholar
  14. 14.
    Q. Wilmart, S. Berrada, D. Torrin, V. H. Nguyen, G. Feve, J.-M. Berroir, P. Dollfus, and B. Placais, 2D Mater. 1, 011006 (2014).CrossRefGoogle Scholar
  15. 15.
    H. Terrones and M. Terrones, 2D Mater. 1, 011003 (2014).CrossRefGoogle Scholar
  16. 16.
    S. A. Mikhailov and K. Ziegler, J. Phys.: Condens. Matter 20, 384204 (2008).ADSGoogle Scholar
  17. 17.
    S. A. Mikhailov, Physica E 40, 2626 (2008).CrossRefADSGoogle Scholar
  18. 18.
    L. A. Falkovsky, Phys. Usp. 51, 887 (2008).CrossRefADSGoogle Scholar
  19. 19.
    K. Unterrainer, B. J. Keay, M. C. Wanke, S. J. Allen, D. Leonard, G. Medeiros-Ribeiro, U. Bhattacharya, and M. G. W. Rodwell, Phys. Rev. Lett. 76, 2973 (1996).CrossRefADSGoogle Scholar
  20. 20.
    A. A. Andronov, I. M. Nefedov, and A. V. Sosnin, Semiconductors 37, 360 (2003).CrossRefADSGoogle Scholar
  21. 21.
    Yu. A. Romanov and Yu. Yu. Romanova, Phys. Solid State 45, 559 (2003).CrossRefADSGoogle Scholar
  22. 22.
    V. F. Elesin and Yu. V. Kopaev, Phys. Usp. 46, 752 (2003).CrossRefADSGoogle Scholar
  23. 23.
    Yu. A. Romanov and Yu. Yu. Romanova, Semiconductors 39, 147 (2005).CrossRefADSGoogle Scholar
  24. 24.
    T. Hyart, A. V. Shorokhov, and K. N. Alekseev, Phys. Rev. Lett. 98, 220404 (2007).CrossRefADSGoogle Scholar
  25. 25.
    A. V. Shorokhov, M. A. Pyataev, N. N. Khvastunov, T. Hyart, F. V. Kusmartsev, and K. N. Alekseev, JETP Lett. 100, 766 (2014).CrossRefADSGoogle Scholar
  26. 26.
    V. Krueckl and K. Richter, Phys. Rev. B 85, 115433 (2012).CrossRefADSGoogle Scholar
  27. 27.
    H. Cheng, C. Li, T. Ma, L.-G. Wang, Y. Song, and H.-Q. Lin, Appl. Phys. Lett. 105, 072103 (2014).CrossRefADSGoogle Scholar
  28. 28.
    S. V. Kryuchkov and E. I. Kukhar’, Superlatt. Microstruct. 83, 322 (2015).CrossRefADSGoogle Scholar
  29. 29.
    M. Barbier, P. Vasilopoulos, and F. M. Peeters, Phys. Rev. B 81, 075438 (2010).CrossRefADSGoogle Scholar
  30. 30.
    D. Bolmatov and C.-Y. Mou, J. Exp. Theor. Phys. 112, 102 (2011).CrossRefADSGoogle Scholar
  31. 31.
    D. V. Zavialov, V. I. Konchenkov, and S. V. Kryuchkov, Semiconductors 46, 109 (2012).CrossRefADSGoogle Scholar
  32. 32.
    S. V. Kryuchkov and E. I. Kukhar’, Physica E 46, 25 (2012).CrossRefADSGoogle Scholar
  33. 33.
    J. C. W. Song, A. V. Shytov, and L. S. Levitov, Phys. Rev. Lett. 111, 266801 (2013).CrossRefADSGoogle Scholar
  34. 34.
    P. V. Ratnikov and A. P. Silin, JETP Lett. 100, 311 (2014).CrossRefADSGoogle Scholar
  35. 35.
    J. A. Briones-Torres, J. Madrigal-Melchor, J. C. Martinez-Orozco, and I. Rodriguez-Vargas, Superlat. Microstruct. 73, 98 (2014).CrossRefADSGoogle Scholar
  36. 36.
    J. C. Meyer, C. O. Girit, M. F. Crommite, and A. Zettl, Appl. Phys. Lett. 92, 123110 (2008).CrossRefADSGoogle Scholar
  37. 37.
    A. L. Vazquez de Parga, F. Calleja, B. Borca, M. C. G. Passeggi, J. J. Hinarejos, F. Guinea, and R. Miranda, Phys. Rev. Lett. 100, 056807 (2008).CrossRefADSGoogle Scholar
  38. 38.
    S. V. Kryuchkov and E. I. Kukhar’, Semiconductors 46, 666 (2012).CrossRefADSGoogle Scholar
  39. 39.
    S. V. Kryuchkov, E. I. Kukhar’, and O. S. Nikitina, Superlatt. Microstruct. 60, 524 (2013).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.Volgograd State Socio-Pedagogical UniversityVolgogradRussia
  2. 2.Volgograd State Technical UniversityVolgogradRussia

Personalised recommendations