Advertisement

Semiconductors

, Volume 49, Issue 13, pp 1714–1717 | Cite as

Study of the structure of a thin aluminum layer on the vicinal surface of a gallium arsenide substrate by high-resolution electron microscopy

  • M. V. Lovygin
  • N. I. Borgardt
  • M. Seibt
  • I. P. Kazakov
  • A. V. Tsikunov
Materials for Electronic Engineering

Abstract

The results of electron-microscopy studies of a thin epitaxial aluminum layer deposited onto a misoriented gallium-arsenide substrate are reported. It is established that the layer consists of differently oriented grains, whose crystal lattices are coherently conjugated with the substrate with the formation of misfit dislocations, as in the case of a layer on a singular substrate. Atomic steps on the substrate surface are visualized, and their influence on the growth of aluminum crystal grains is discussed.

Keywords

aluminum gallium arsenide vicinal surface molecular-beam epitaxy high-resolution transmission electron microscopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Dormaier, Q. Zhang, B. Liu, et al., J. Appl. Phys. 105, 044505 (2009).ADSCrossRefGoogle Scholar
  2. 2.
    A. A. Kumar, V. Janardhanam, and V. R. Reddy, J. Mater. Sci.: Mater. Electron. 22, 854 (2011).Google Scholar
  3. 3.
    S.-W. Lin, J.-Y. Wu, S.-D. Lin, et al., Jpn. J. Appl. Phys. 52, 045801 (2013).ADSCrossRefGoogle Scholar
  4. 4.
    Y.-J. Lu, J. Kim, H.-Y. Chen, et al., Science 337, 450 (2012).ADSCrossRefGoogle Scholar
  5. 5.
    G. Landgren, R. Ludeke, and C. Serrano, J. Cryst. Growth 60, 393 (1982).ADSCrossRefGoogle Scholar
  6. 6.
    C. J. Kiely and D. Cherns, Philos. Mag. A 59, 1 (1989).ADSCrossRefGoogle Scholar
  7. 7.
    S. B. Samavedam and E. A. Fitzgerald, J. Appl. Phys. 81, 3108 (1997).ADSCrossRefGoogle Scholar
  8. 8.
    P. M. Petroff, L. C. Feldman, A. Y. Cho, and R. S. Williams, J. Appl. Phys. 52, 7317 (1981).ADSCrossRefGoogle Scholar
  9. 9.
    Y. S. Luo, Y.-N. Yang, J. H. Weaver, et al., Phys. Rev. B 49, 1893 (1994).ADSCrossRefGoogle Scholar
  10. 10.
    A. Rosenauer, Transmission Electron Microscopy of Semiconductor Nanostructures: Analysis of Composition and Strain State (Springer, Berlin, Heidelberg, 2003), p. 147.Google Scholar
  11. 11.
    N. I. Borgardt, A. V. Zykov, V. N. Kukin, and S. K. Maksimov, Izv. Vyssh. Uchebn. Zaved., Elektron., Nos. 4–5, 44 (2005).Google Scholar
  12. 12.
    L. M. Sorokin, L. P. Efimenko, A. E. Kalmykov, and Yu. I. Smolin, Phys. Solid State 46, 983 (2004).ADSCrossRefGoogle Scholar
  13. 13.
    M. J. Hÿtch, E. Snoeck, and R. Kilaas, Ultramicroscopy 74, 131 (1998).CrossRefGoogle Scholar
  14. 14.
    Strain Mapping in the TEM. http://elim.physik.uniulm.de/?page_id=1044. Cited August 25, 2014.Google Scholar
  15. 15.
    X. R. Huang, J. Bai, M. Dudley, et al., Appl. Phys. Lett. 86, 211916 (2005).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • M. V. Lovygin
    • 1
  • N. I. Borgardt
    • 1
  • M. Seibt
    • 2
  • I. P. Kazakov
    • 3
  • A. V. Tsikunov
    • 3
  1. 1.National Research University of Electronic Technology “MIET”Zelenograd, MoscowRussia
  2. 2.IV Physikalisches InstitutUniversität GöttingenGöttingenGermany
  3. 3.Lebedev Physical InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations