Semiconductors

, Volume 49, Issue 13, pp 1749–1753 | Cite as

Fast-response biological sensors based on single-layer carbon nanotubes modified with specific aptamers

  • K. F. Akhmadishina
  • I. I. Bobrinetskiy
  • I. A. Komarov
  • A. M. Malovichko
  • V. K. Nevolin
  • G. E. Fedorov
  • A. V. Golovin
  • A. O. Zalevskiy
  • R. D. Aidarkhanov
Nanotechnology

Abstract

The possibility of the fabrication of a fast-response biological sensor based on a composite of single-layer carbon nanotubes and aptamers for the specific detection of proteins is shown. The effect of modification of the surface of the carbon nanotubes on the selectivity and sensitivity of the sensors is investigated. It is shown that carboxylated nanotubes have a better selectivity for detecting thrombin.

Keywords

carbon nanotube aptamer thrombin biosensor composite 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Nutiu and Y. Li, J. Am. Chem. Soc. 125, 4771 (2003). doi: 10.1021/ja0289620.CrossRefGoogle Scholar
  2. 2.
    N. Li and C.-M. Ho, J. Am. Chem. Soc. 130, 2380 (2008). doi: 10.1021/ja076787b.CrossRefGoogle Scholar
  3. 3.
    N. Tuleuova, C. N. Jones, J. Yan, et al., Anal. Chem. 82, 1851 (2010). doi: 10.1021/ac9025237.CrossRefGoogle Scholar
  4. 4.
    J. A. Cruz-Aguado, and G. Penner, Anal. Chem. 80, 8853 (2008). doi: 10.1021/ac8017058.CrossRefGoogle Scholar
  5. 5.
    J. L. Chavez, W. Lyon, N. Kelley-Loughnane, and M. O. Stone, Biosens. Bioelectron. 26, 23 (2010). doi: 10.1016/j.bios.2010.04.049.CrossRefGoogle Scholar
  6. 6.
    Wei Fang and Ho Chih-Ming, Anal. Bioanal. Chem. 393, 1943 (2009).CrossRefGoogle Scholar
  7. 7.
    J. Liu and Y. Lu, Angew. Chem. Int. Ed. 45, 90 (2005). doi: 10.1002/anie.200502589.CrossRefGoogle Scholar
  8. 8.
    H. Y. Jeong, D.-S. Lee, H. K. Choi, et al., Appl. Phys. Lett. 96, 213105 (2010).ADSCrossRefGoogle Scholar
  9. 9.
    A. Gohier, A. Dhar, L. Gorintin, et al., Appl. Phys. Lett. 98, 063103 (2011).ADSCrossRefGoogle Scholar
  10. 10.
    G. Yang, C. Lee, J. Kim, et al., Phys. Chem. Chem. Phys. 15, 1798 (2013).CrossRefGoogle Scholar
  11. 11.
    Y. H. Kwak, D. S. Choi, Y. N. Kim, et al., Biosens. Bioelectron. 37, 82 (2012).CrossRefGoogle Scholar
  12. 12.
    K. F. Akhmadishina, I. I. Bobrinetskii, I. A. Komarov, A. M. Malovichko, V. K. Nevolin, V. A. Petukhov, A. V. Golovin, and A. O. Zalevskii, Nanotechnol. Russ. 8, 721 (2013).CrossRefGoogle Scholar
  13. 13.
    H.-M. So, K. Won, Y. H. Kim, et al., J. Am. Chem. Soc. 127, 11906 (2005).CrossRefGoogle Scholar
  14. 14.
    T. An, K. S. Kim, S. K. Hahn, and G. Lim, Lab Chip. 10, 2052 (2010).CrossRefGoogle Scholar
  15. 15.
    S. Othman, S. A. Quadria, Shahid Kabira, and Muhammad Hassan Bin Afzal, J. Exp. Nanosci. 8, 154 (2013).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • K. F. Akhmadishina
    • 1
  • I. I. Bobrinetskiy
    • 1
  • I. A. Komarov
    • 1
  • A. M. Malovichko
    • 1
  • V. K. Nevolin
    • 1
  • G. E. Fedorov
    • 1
    • 2
  • A. V. Golovin
    • 3
  • A. O. Zalevskiy
    • 3
  • R. D. Aidarkhanov
    • 3
  1. 1.National Research University of Electronic Technology “MIET”MoscowRussia
  2. 2.Moscow Pedagogical State UniversityMoscowRussia
  3. 3.Moscow State UniversityMoscowRussia

Personalised recommendations