Semiconductors

, Volume 49, Issue 11, pp 1516–1521 | Cite as

Effect of the design of the active region of monolithic multi-color LED heterostructures on their spectra and emission efficiency

  • A. F. Tsatsulnikov
  • W. V. Lundin
  • A. V. Sakharov
  • E. E. Zavarin
  • S. O. Usov
  • A. E. Nikolaev
  • M. A. Sinitsyn
  • N. A. Cherkashin
  • S. Y. Karpov
Physics of Semiconductor Devices

Abstract

The design features of light-emitting-diode heterostructures with a monolithic InGaN/GaN active region containing several InGaN quantum wells (QWs) emitting at different wavelengths, grown by metal-organic chemical vapor deposition, are studied. It is shown that the number of emission bands can be raised to three by increasing the number of deposited InGaN QWs with different indium contents. The emission efficiency decreases by approximately 30% with increasing number of QWs at high currents. The dependences of the optical properties of the heterostructures on the number of QWs and types of barriers between the QWs (GaN layer or InGaN/GaN short-period superlattice) are analyzed. It is demonstrated that the ratio between the intensities of the emission lines widely varies with current flowing through the structure and greatly depends on the type and width of the barriers between the QWs.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. F. Schubert, Light-Emitting Diodes (Cambridge Univ. Press, New York, 2003).Google Scholar
  2. 2.
    A. Zukauskas, M. Shur, and R. Gaska, Introduction to Solid-State Lighting (Wiley, New York, 2002).Google Scholar
  3. 3.
    A. F. Tsatsulnikov, V. V. Lundin, A. V. Sakharov, E. E. Zavarin, S. O. Usov, A. E. Nikolaev, N. V. Kryzhanovskaya, M. A. Sinitsyn, V. S. Sizov, A. L. Zakgeim, and M. N. Mizerov, Semiconductors 44, 808 (2010).CrossRefADSGoogle Scholar
  4. 4.
    A. F. Tsatsulnikov, V. V. Lundin, A. V. Sakharov, E. E. Zavarin, S. O. Usov, A. E. Nikolaev, N. A. Cherkashin, B. Ya. Ber, D. Yu. Kazantsev, M. N. Mizerov, Hee Seok Park, M. Hytch, and F. Hue, Semiconductors 44, 93 (2010).CrossRefADSGoogle Scholar
  5. 5.
    W. V. Lundin, A. E. Nikolaev, A. V. Sakharov, E. E. Zavarin, G. A. Valkovskiy, M. A. Yagovkina, S. O. Usov, N. V. Kryzhanovskaya, V. S. Sizov, P. N. Brunkov, A. L. Zakgeim, A. E. Cherniakov, N. A. Cherkashin, M. J. Hytch, E. V. Yakovlev, D. S. Bazarevskiy, M. M. Rozhavskaya, and A. F. Tsatsulnikov, J. Cryst. Growth 315, 267 (2011).CrossRefADSGoogle Scholar
  6. 6.
    N. V. Kryzhanovskaya, V. V. Lundin, A. E. Nikolaev, A. F. Tsatsulnikov, A. V. Sakharov, M. M. Pavlov, N. A. Cherkashin, G. A. Val’kovskii, M. A. Yagovkina, and S. O. Usov, Semiconductors 44, 828 (2010).CrossRefADSGoogle Scholar
  7. 7.
    A. F. Tsatsulnikov, V. V. Lundin, E. E. Zavarin, A. E. Nikolaev, A. V. Sakharov, V. S. Sizov, S. O. Usov, Yu. G. Musikhin, and D. Gerthsen, Semiconductors 45, 271 (2011).CrossRefADSGoogle Scholar
  8. 8.
    M. J. Hytch, E. Snoeck, and R. Kilaas, Ultramicroscopy 74, 131 (1998).CrossRefGoogle Scholar
  9. 9.
    Simulator for Light Emitters Based on Nitride Semiconductors (SiLENSe), Software Tool for Light Emitting Diode Bandgap Engineering. http://wwwsoftimpact. ru/silensephpGoogle Scholar
  10. 10.
    K. A. Bulashevich, A. V. Kulik, and S. Yu. Karpov, Phys. Status Solidi A, 1 (2014). doi: 10.1002/pssa.201431576.Google Scholar
  11. 11.
    Sh. Saito, R. Hashimoto, J. Hwang, and Sh. Nunoue, Appl. Phys. Express 6, 111004 (2013).CrossRefADSGoogle Scholar
  12. 12.
    J.-I. Hwang, R. Hashimoto, Sh. Saito, and Sh. Nunoue, Appl. Phys. Express 7, 071003 (2014).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • A. F. Tsatsulnikov
    • 1
    • 2
  • W. V. Lundin
    • 1
    • 2
  • A. V. Sakharov
    • 1
    • 2
  • E. E. Zavarin
    • 1
  • S. O. Usov
    • 1
    • 2
  • A. E. Nikolaev
    • 1
    • 2
  • M. A. Sinitsyn
    • 1
  • N. A. Cherkashin
    • 3
  • S. Y. Karpov
    • 4
  1. 1.Ioffe Physical–Technical InstituteRussian Academy of SciencesSt. PetersburgRussia
  2. 2.Submicron Heterostructures for Microelectronics Research and Engineering CenterRussian Academy of SciencesSt. PetersburgRussia
  3. 3.CEMES-CNRS–Université de ToulouseToulouseFrance
  4. 4.STR Group–Soft-Impact OOOSt. PetersburgRussia

Personalised recommendations