Semiconductors

, Volume 49, Issue 4, pp 461–471 | Cite as

Temperature dependences of the contact resistivity in ohmic contacts to n+-InN

  • A. V. Sachenko
  • A. E. Belyaev
  • N. S. Boltovets
  • P. N. Brunkov
  • V. N. Jmerik
  • S. V. Ivanov
  • L. M. Kapitanchuk
  • R. V. Konakova
  • V. P. Klad’ko
  • P. N. Romanets
  • P. O. Saja
  • N. V. Safryuk
  • V. N. Sheremet
Semiconductor Structures, Low-Dimensional Systems, and Quantum Phenomena
  • 51 Downloads

Abstract

The temperature dependences of the contact resistivity (ρc) of ohmic contacts based on the Au-Ti-Pd-InN system are measured at an InN doping level of 2 × 1018 cm−3 in the temperature range of 4.2–300 K. At temperatures T > 150 K, linearly increasing dependences ρc(T) are obtained. The dependences are explained within the mechanism of thermionic current flow through metal shunts associated with dislocations. Good agreement between theoretical and experimental dependences is achieved assuming that the flowing current is limited by the total resistance of the metal shunts, and the density of conductive dislocations is ∼5 × 109 cm−2. Using the X-ray diffraction method, the density of screw and edge dislocations in the structure under study is measured: their total density exceeds 1010 cm−2.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. Yu. Davydov and A. A. Klochikhin, Semiconductors 38, 861 (2004).CrossRefADSGoogle Scholar
  2. 2.
    Indium Nitride and Related Alloys, Ed. by T. D. Veal, C. F. McConville, and W. J. Achaff (CRS Press, Boca Raton, 2010).Google Scholar
  3. 3.
    A. N. Kovalev, Transistors Based on Semiconductor Heterostructures (Izd. Dom MISiS, Moscow, 2011) [in Russian].Google Scholar
  4. 4.
    S. V. Ivanov, D. V. Nechaev, A. A. Sitnikova, V. V. Ratnikov, M. A. Yagovkina, N. V. Rzheutskii, E. V. Lutsenko, V. N. Jmerik, Semic. Sci. Technol. 29(8), 084008 (2014).CrossRefADSGoogle Scholar
  5. 5.
    T. V. Blank and Yu. A. Goldberg, Semiconductors 41, 1263 (2007).CrossRefADSGoogle Scholar
  6. 6.
    A. V. Sachenko, A. E. Belyaev, N. S. Boltovets, R. V. Konakova, Ya. Ya. Kudryk, S. V. Novitskii, V. N. Sheremet, J. Li, and S. A. Vitusevich, J. Appl. Phys. 111, 083701 (2012).CrossRefADSGoogle Scholar
  7. 7.
    A. V. Sachenko, A. E. Belyaev, N. S. Boltovets, A. O. Vinogradov, V. P. Kladko, R. V. Konakova, Ya. Ya. Kudryk, A. V. Kuchuk, V. N. Sheremet, and S. A. Vitusevich, J. Appl. Phys. 112, 063703 (2012).CrossRefADSGoogle Scholar
  8. 8.
    S. V. Ivanov, T. V. Shubina, T. A. Komissarova, and V. N. Jmerik, J. Cryst. Growth 403, 83 (2014).CrossRefADSGoogle Scholar
  9. 9.
    S. M. Sze and K. K. Ng, Physics of Semiconductor Devices, 3rd ed. (Wiley, New Jersey, 2007).Google Scholar
  10. 10.
    P. Rinke, M. Scheffler, A. Qteish, M. Wnkelnkemper, D. Bimberg, and J. Neugebauer, Appl. Phys. Lett. 89, 161919 (2006).CrossRefADSGoogle Scholar
  11. 11.
    C. R. Abernathy, S. J. Pearton, F. Ren, and P. W. Wisk, J. Vac. Sci. Technol. B 11, 179 (1993).CrossRefGoogle Scholar
  12. 12.
    M. E. Lin, F. J. Huang, and H. Morkoc, Appl. Phys. Lett. 64, 2557 (1994).CrossRefADSGoogle Scholar
  13. 13.
    F. Ren, C. R. Abernathy, S. J. Pearton, and P. W. Wisk, Appl. Phys. Lett. 64, 1508 (1994).CrossRefADSGoogle Scholar
  14. 14.
    F. Ren, C. R. Abernathy, S. N. G. Chu, J. R. Lothian, and S. J. Pearton, Appl. Phys. Lett. 66, 1503 (1995).CrossRefADSGoogle Scholar
  15. 15.
    A. Durba, S. J. Pearton, C. R. Abernathy, J. W. Lee, P. H. Holloway, and F. Ren, J. Vac. Sci. Technol. B 14, 2582 (1996).CrossRefGoogle Scholar
  16. 16.
    C. B. Varthli, S. J. Pearton, C. R. Abernathy, J. D. MacKenzie, R. J. Shul, J. C. Zolper, M. L. Lovejoy, A. G. Baca, and M. Hagerott-Crawford, J. Vac. Sci. Technol. B 14, 3520 (1996).CrossRefGoogle Scholar
  17. 17.
    S. M. Donovan, J. D. MacKenzie, C. R. Abernathy, S. J. Pearton, F. Ren, K. Jones, and M. Cole, Appl. Phys. Lett. 70, 2592 (1997).CrossRefADSGoogle Scholar
  18. 18.
    F. Ren, C. B. Vartuli, S. A. Pearton, C. R. Abernathy, S. M. Donovan, J. D. MacKenzie, R. J. Shul, J. C. Zolper, M. L. Lovejoy, A. G. Boy, M. Hagerott-Crawford, and K. A. Jones, J. Vac. Sci. Technol. A 15, 802 (1997).CrossRefADSGoogle Scholar
  19. 19.
    C. B. Vartuli, S. J. Pearton, C. R. Abernathy, J. D. MacKenzie, M. L. Lovejoy, R. J. Shul, Z. C. Zolper, A. G. Baca, M. Hagerot-Crawford, A. Jones, and F. Ren, Solid-State Electron. 41, 531 (1997).CrossRefADSGoogle Scholar
  20. 20.
    S. M. Donovan, J. D. MacKenzie, C. R. Abernathy, S. J. Pearton, F. Ren, K. Jones, and M. Cole, Solid-State Electron. 42, 1831 (1998).CrossRefADSGoogle Scholar
  21. 21.
    Han-Ki Kim, Ja-Soon Jang, Seong-Ju Park, and Tac-Jeon Seong, J. Electrochem. Soc. 147, 1573 (2000).CrossRefGoogle Scholar
  22. 22.
    H. Lu, W. J. Schaff, L. F. Eastman, and C. E. Stutz, Appl. Phys. Lett. 82, 1736 (2003).CrossRefADSGoogle Scholar
  23. 23.
    Chin-Yang Chang, Gou-Chung Chi, Wei-Ming Wang, Li-Chyong Chen, Kuei-Hsien Chen, F. Ren, and S. J. Pearton, Appl. Phys. Lett. 87, 093112 (2005).CrossRefADSGoogle Scholar
  24. 24.
    Rohit Khanna, B. P. Gila, L. Stafford, S. J. Pearton, F. Ren, I. I. Kravchenko, Amir Dabiran, and A. Osinsky, Appl. Phys. Lett. 90, 162107 (2007).CrossRefADSGoogle Scholar
  25. 25.
    M. E. Rudinsky, A. A. Gutkin, and P. N. Brunkov, Semiconductors 44, 1020 (2010).CrossRefADSGoogle Scholar
  26. 26.
    N. Cheng, H. von Seefeld, and M.-A. Nicolet, in Proceedings of the Symposium on Thin Films Interfaces and Interactions, Ed. by J. E. E. Baglin and J. M. Poate (Princeton Univ. Press, Princeton, NJ, 1980), Vol. 80, p. 323.Google Scholar
  27. 27.
    V. Bonch-Bruevich and S. Kalashnikov, Semiconductor Physics (Nauka, Moscow, 1990) [in Russian].Google Scholar
  28. 28.
    P. M. Malkov, I. B. Danilin, A. G. Zel’dovich, and A. B. Fradkov, Handbook of Physical and Technical Fundamentals of Cryogenics (Energiya, Moscow, 1973) [in Russian].Google Scholar
  29. 29.
    J. Bardeen, J. Appl. Phys. 11, 88 (1940).CrossRefADSGoogle Scholar
  30. 30.
    Properties of Advanced Semiconductor Materials GaN, AlN, InN, BN, SiC, SiGe, Ed. by M. M. Levinshtein, S. L. Rumyantsev, and M. S. Shur (Wiley, New York, 2001).Google Scholar
  31. 31.
    F. A. Padovani and R. Stratton, Solid State Electron. 9, 695 (1966).CrossRefADSGoogle Scholar
  32. 32.
    V. V. Mamutin, N. A. Cherkashin, V. A. Vekshin, V. N. Zhmerik, and S. V. Ivanov, Phys. Solid State 43, 151 (2001).CrossRefADSGoogle Scholar
  33. 33.
    H. F. Matare, Defect Electronics in Semiconductors (Wiley-Interscience, New York, 1971).Google Scholar
  34. 34.
    V. I. Fistul’, Heavily Doped Semiconductors (Plenum Press, New York, 1969).Google Scholar
  35. 35.
    I. M. Dykman, V. M. Rosenbaum, and F. T. Vasko, Phys. Status Solidi B 88, 385 (1978).CrossRefADSGoogle Scholar
  36. 36.
    V. F. Gantmakher and I. B. Levinson, Carrier Scattering in Metals and Semiconductors (Nauka, Moscow, 1984; North-Holland, Amsterdam, 1987).Google Scholar
  37. 37.
    K. Seeger, Semiconductor Physics (Springer, Wien, 1973).CrossRefGoogle Scholar
  38. 38.
    C. Rauch, F. Tuomisto, P. D. C. King, T. D. Veal, H. Lu, and W. J. Schaff, Appl. Phys. Lett. 101, 011903 (2012).CrossRefADSGoogle Scholar
  39. 39.
    K.-F. Berggren and B. E. Sernelius, Phys. Rev. B 24, 1971 (1981).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • A. V. Sachenko
    • 1
  • A. E. Belyaev
    • 1
  • N. S. Boltovets
    • 2
  • P. N. Brunkov
    • 3
    • 4
  • V. N. Jmerik
    • 3
  • S. V. Ivanov
    • 3
  • L. M. Kapitanchuk
    • 5
  • R. V. Konakova
    • 1
  • V. P. Klad’ko
    • 1
  • P. N. Romanets
    • 1
  • P. O. Saja
    • 1
  • N. V. Safryuk
    • 1
  • V. N. Sheremet
    • 1
  1. 1.Lashkaryov Institute of Semiconductor PhysicsNational Academy of SciencesKyivUkraine
  2. 2.“Orion” Research InstituteKyivUkraine
  3. 3.Ioffe Physical-Technical InstituteRussian Academy of SciencesSt. PetersburgRussia
  4. 4.National Research University of Information Technologies, Mechanics and OpticsSt. PetersburgRussia
  5. 5.Paton Electric Welding InstituteNational Academy of Sciences of UkraineKyivUkraine

Personalised recommendations