Advertisement

Semiconductors

, Volume 49, Issue 4, pp 504–507 | Cite as

Plasma waves in a graphene-based superlattice in the presence of a high static electric field

  • S. Yu. GlazovEmail author
  • A. A. Kovalev
  • N. E. Mescheryakova
Carbon Systems

Abstract

The effect of a high dc electric field on plasma waves in a graphene-based superlattice on a striped substrate is studied. The calculations are performed on the basis of the theory of plasma waves in the random phase approximation with consideration for umklapp processes. The high electric field induces a decrease in the plasma-wave frequency and brings about the appearance of collisionless damping.

Keywords

Plasma Wave High Electric Field Random Phase Approximation Umklapp Process Wave Vector Component 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. A. Chernozatonskii, P. B. Sorokin, E. E. Belova, J. Bruning, and A. S. Fedorov, JETP Lett. 84, 115 (2006).CrossRefGoogle Scholar
  2. 2.
    L. A. Chernozatonskii, P. B. Sorokin, E. E. Belova, J. Bruning, and A. S. Fedorov, JETP Lett. 85, 77 (2007).CrossRefADSGoogle Scholar
  3. 3.
    H. Sevincli, M. Topsakal, and S. Ciraci, Phys. Rev. B 78, 245402 (2008).CrossRefADSGoogle Scholar
  4. 4.
    P. V. Ratnikov, JETP Lett. 90, 469 (2009).CrossRefADSGoogle Scholar
  5. 5.
    M. Barbier, P. Vasilopoulos, and F. M. Peeters, Phil. Trans. R. Soc. A 368, 5499 (2010).CrossRefADSzbMATHMathSciNetGoogle Scholar
  6. 6.
    D. Bolmatov and Mou Chung-Yu, J. Exp. Theor. Phys. 112, 102 (2011).CrossRefADSGoogle Scholar
  7. 7.
    S. V. Kryuchkov, E. I. Kukhar, and V. A. Yakovenko, Bull. Russ. Acad. Sci.: Phys. 74, 1679 (2010).CrossRefzbMATHGoogle Scholar
  8. 8.
    D. V. Zav’yalov, V. I. Konchenkov, and S. V. Kryuchkov, Semiconductors 46, 109 (2012).CrossRefADSGoogle Scholar
  9. 9.
    S. Yu. Glazov and N. E. Meshcheryakova, Nanosistemy: Fiz., Khim., Mat. 3(1), 64 (2012).Google Scholar
  10. 10.
    S. Yu. Glazov, A. A. Kovalev, and N. E. Meshcheryakova, Bull. Russ. Acad. Sci.: Phys. 76, 1323 (2012).CrossRefGoogle Scholar
  11. 11.
    S. V. Kryuchkov and E. I. Kukhar, Phys. E: Low-Dim. Syst. Nanostruct. 46, 25 (2012).CrossRefADSGoogle Scholar
  12. 12.
    S. Yu. Glazov, N. E. Meshcheryakova, and D. V. Martynov, Bull. Russ. Acad. Sci.: Phys. 76, 1319 (2012).CrossRefGoogle Scholar
  13. 13.
    V. A. Yakovlev, Sov. Phys. Solid State 3, 1442 (1962).Google Scholar
  14. 14.
    S. Yu. Glazov and S. V. Kryuchkov, Semiconductors 35, 444 (2001).CrossRefADSGoogle Scholar
  15. 15.
    S. Yu. Glazov and E. S. Kubrakova, Bull. Russ. Acad. Sci.: Phys. 75, 1616 (2011).CrossRefzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • S. Yu. Glazov
    • 1
    Email author
  • A. A. Kovalev
    • 1
  • N. E. Mescheryakova
    • 2
  1. 1.Volgograd State Social Pedagogical UniversityVolgogradRussia
  2. 2.Volgograd Institute of BusinessVolgogradRussia

Personalised recommendations