Advertisement

Semiconductors

, Volume 49, Issue 3, pp 337–344 | Cite as

Electron microscopy of an aluminum layer grown on the vicinal surface of a gallium arsenide substrate

  • M. V. Lovygin
  • N. I. Borgardt
  • I. P. Kazakov
  • M. Seibt
Surfaces, Interfaces, and Thin Films

Abstract

A thin Al layer grown by molecular-beam epitaxy on a misoriented GaAs (100) substrate is studied by transmission electron microscopy. Electron diffraction data and bright-field, dark-field, and high-resolution images show that, in the layer, there are Al grains of three types of crystallographic orientation: Al (100), Al (110), and Al (110)R. The specific structural features of the interfaces between the differently oriented grains and substrate are studied by digital processing of the high-resolution images. From quantitative analysis of the dark-field images, the relative content and sizes of the differently oriented grains are determined. It is found that atomic steps at the substrate surface cause an increase in the fraction and sizes of Al (110)R grains and a decrease in the fraction of Al (100) grains, compared to the corresponding fractions and sizes in the layer grown on a singular substrate surface.

Keywords

GaAs Interplanar Spacing Dark Field Image Misfit Dislocation Atomic Plane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zh. I. Alferov, Semiconductors 32, 1 (1997).CrossRefADSGoogle Scholar
  2. 2.
    Zh. I. Alferov, V. M. Andreev, and V. D. Rumyantsev, Semiconductors 38, 899 (2004).CrossRefADSGoogle Scholar
  3. 3.
    J. P. Reithmaier, in Nanostructured Materials for Advanced Technological Applications, Ed. by J. P. Reithmaier, P. Petkov, W. Kulisch, and C. Popov (Springer, Dordrecht, 2008), p. 447.Google Scholar
  4. 4.
    R. R. LaPierre, A. C. E. Chia, S. J. Gibson, C. M. Haapamaki, J. Boulanger, R. Yee, P. Kuyanov, J. Zhang, N. Tajik, N. Jewell, and K. M. A. Rahman, Phys. Status Solidi RRL 7, 815 (2013).CrossRefGoogle Scholar
  5. 5.
    B. L. Sharma, Metal-Semiconductor Schottky Barrier Junctions and their Applications (Plenum, New York, 1984).CrossRefGoogle Scholar
  6. 6.
    W. Mönch, Electronic Structure of Metal-Semiconductor Contancts (Springer, Dordrecht, Netherlands, 1990).CrossRefGoogle Scholar
  7. 7.
    Z. Liliental-Weber, E. R. Weber, and N. Newman, in Contacts to Semiconductors: Fundamentals and Technology, Ed. by L. J. Brillson (Noyes Publications, Park Ridge, 1993), p. 416.Google Scholar
  8. 8.
    J.-S. Huang, V. Callegari, P. Geisler, C. Brüning, J. Kern, J. C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, Nature Commun. 1, 150 (2010).CrossRefADSGoogle Scholar
  9. 9.
    Y.-J. Lu, J. Kim, H.-Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M.-Y. Lu, B.-H. Li, X. Qiu, W.-H. Chang, L.-J. Chen, G. Shvets, C.-K. Shih, and S. Gwo, Science 337, 450 (2012).CrossRefADSGoogle Scholar
  10. 10.
    S.-W. Lin, J.-Y. Wu, S.-D. Lin, M.-C. Lo, M.-H. Lin, and C.-T. Liang, Jpn. J. Appl. Phys. 52, 045801 (2013).CrossRefADSGoogle Scholar
  11. 11.
    J. Massies, J. Chaplart, and N. T. Linh, Solid State Commun. 32, 707 (1979).CrossRefADSGoogle Scholar
  12. 12.
    P. M. Petroff, L. C. Feldman, A. Y. Cho, and R. S. Williams, J. Appl. Phys. 52, 7317 (1981).CrossRefADSGoogle Scholar
  13. 13.
    G. Landgren, R. Ludeke, and C. Serrano, J. Cryst. Growth 60, 393 (1982).CrossRefADSGoogle Scholar
  14. 14.
    C. J. Kiely and D. Cherns, Philos. Mag. A 59, 1 (1989).CrossRefADSGoogle Scholar
  15. 15.
    S. B. Samavedam and E. A. Fitzgerald, J. Appl. Phys. 81, 3108 (1997).CrossRefADSGoogle Scholar
  16. 16.
    Y. Sun, K. Li, J. Dong, X. Zeng, S. Yu, Y. Zhao, C. Zhao, and H. Yang, J. Mater. Sci.: Mater. Electron. 25, 581 (2014).Google Scholar
  17. 17.
    Y. S. Luo, Y.-N. Yang, J. H. Weaver, L. T. Florez, and C. J. Palmstrøm, Phys. Rev. B 49, 1893 (1994).CrossRefADSGoogle Scholar
  18. 18.
    F. Ernst and M. Rühle, High Resolution Imaging and Spectrometry of Materials (Springer, Berlin, 2003), pp. 69–118.CrossRefGoogle Scholar
  19. 19.
    A. Rosenauer, Transmission Electron Microscopy of Semiconductor Nanostructures: Analysis of Composition and Strain State (Springer Berlin, Heidelberg, 2003).Google Scholar
  20. 20.
    L. M. Sorokin, L. P. Efimenko, A. E. Kalmykov, and Yu. I. Smolin, Phys. Solid State 46, 893 (2004).Google Scholar
  21. 21.
    R. Ludeke, L. L. Chang, and L. Esaki, Appl. Phys. Lett. 23, 201 (1973).CrossRefADSGoogle Scholar
  22. 22.
    Y. Cho and P. D. Dernier, J. Appl. Phys. 49, 3328 (1978).CrossRefADSGoogle Scholar
  23. 23.
    Electron Microscopy of Thin Crystals, Ed. by P. B. Hirsch, A. Howie, R. B. Nicholson, D. W. Pashley, and M. J. Whelan (Plenum, New York, 1965; Mir, Moscow, 1968), ch. 15, p. 363.Google Scholar
  24. 24.
    R. C. Gonzalez and R. E. Woods, Digital Image Processing (Prentice Hall, 2007; Tekhnosfera, Moscow, 2005), p. 756.Google Scholar
  25. 25.
  26. 26.
    A. K. Jain, Fundamentals of Digital Image Processing (Random House, New York, 1989), p. 394.zbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • M. V. Lovygin
    • 1
  • N. I. Borgardt
    • 1
  • I. P. Kazakov
    • 2
  • M. Seibt
    • 3
  1. 1.National Research University of Electronic Technology “MIET”Zelenograd, MoscowRussia
  2. 2.Lebedev Physical InstituteRussian Academy of SciencesMoscowRussia
  3. 3.IV. Physikalisches InstitutUniversität GöttingenGöttingenGermany

Personalised recommendations