Advertisement

Semiconductors

, Volume 49, Issue 2, pp 143–148 | Cite as

Effect of low-energy electron irradiation on the optical properties of structures containing multiple InGaN/GaN quantum well

  • P. S. Vergeles
  • E. B. YakimovEmail author
XVIII Symposium “Nanophysics and Nanoelectronics”, Nizhni Novgorod, March 10–14, 2014

Abstract

Data on the temperature dependence of the cathodoluminescence intensity in multiple InGaN/GaN quantum-well structures in the temperature range 80–300 K are reported. Unirradiated structures and structures irradiated with electrons with subthreshold energy are studied. It is shown that, upon irradiation, the temperature dependence becomes weaker. From analysis of the results obtained in this study and previously, it can be suggested that electron irradiation initiates the relaxation of strains produced in quantum wells due to the InGaN-GaN lattice mismatch.

Keywords

Emission Band Electron Irradiation Space Charge Region Nonradiative Recombination Center Synchrotron Neutron Tech 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    O. Gfrörer, C. Gemmer, J. Off, J. S. Im, F. Scholz, and A. Hangleiter, Phys. Status Solidi B 216, 405 (1999).ADSCrossRefGoogle Scholar
  2. 2.
    U. Jahn, S. Dhar, H. Kostial, I. M. Watson, and K. Fujiwara, Inst. Phys. Conf. Ser. 180, 337 (2003).Google Scholar
  3. 3.
    U. Jahn, S. Dhar, H. Kostial, I. M. Watson, and K. Fujiwara, Phys. Status Solidi C 0, 2223 (2003).CrossRefGoogle Scholar
  4. 4.
    N. M. Shmidt, P. S. Vergeles, E. E. Yakimov, and E. B. Yakimov, Solid State Commun. 151, 208 (2011).ADSCrossRefGoogle Scholar
  5. 5.
    N. M. Shmidt, P. S. Vergeles, E. E. Yakimov, and E. B. Yakimov, Phys. Status Solidi C 8, 1265 (2011).ADSCrossRefGoogle Scholar
  6. 6.
    P. S. Vergeles and E. B. Yakimov, J. Phys.: Conf. Ser. 281, 012013 (2011).ADSGoogle Scholar
  7. 7.
    M. Thomsen, H. Jönen, U. Rossow, and A. Hangleiter, J. Appl. Phys. 109, 123710 (2011).ADSCrossRefGoogle Scholar
  8. 8.
    P. S. Vergeles, N. M. Shmidt, and E. B. Yakimov, J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 5, 945 (2011).CrossRefGoogle Scholar
  9. 9.
    N. M. Lockrey and M. R. Phillips, J. Semicond. 32, 012001 (2011).ADSCrossRefGoogle Scholar
  10. 10.
    P. S. Vergeles, N. M. Shmidt, and E. B. Yakimov, J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 6, 890 (2012).CrossRefGoogle Scholar
  11. 11.
    H. Nykänen, P. Mattila, S. Suihkonen, J. Riikonen, and M. Sopanen, Phys. Status Solidi C 9, 1563 (2012).ADSCrossRefGoogle Scholar
  12. 12.
    E. B. Yakimov, Int. J. Nanopart. 6, 191 (2013).CrossRefGoogle Scholar
  13. 13.
    P. S. Vergeles, N. M. Shmidt, and E. B. Yakimov, Phys. Status Solidi C 10, 464 (2013).ADSCrossRefGoogle Scholar
  14. 14.
    Y. Kuznetsova and M. Zamoryanskaya, Jpn. J. Appl. Phys. 52, 08JJ06 (2013).CrossRefGoogle Scholar
  15. 15.
    E. B. Yakimov, P. S. Vergeles, A. Y. Polyakov, Han-Su Cho, Lee-Woon Jang, and In-Hwan Lee, J. Vac. Sci. Technol. B 32, 011207 (2014).CrossRefGoogle Scholar
  16. 16.
    A. M. Emara, E. A. Berkman, J. Zavada, N. A. El-Masry, and S. M. Bedair, Phys. Status Solidi C 8, 2034 (2011).CrossRefGoogle Scholar
  17. 17.
    P. G. Eliseev, P. Perlin, J. Lee, and M. Osinski, Appl. Phys. Lett. 71, 569 (1997).ADSCrossRefGoogle Scholar
  18. 18.
    C. Netzel, C. Mauder, T. Wernicke, B. Reuters, H. Kalisch, M. Heuken, A. Vescan, M. Weyers, and M. Kneissl, Semicond. Sci. Technol. 26, 105017 (2011).ADSCrossRefGoogle Scholar
  19. 19.
    J. H. Zhu, L. J. Wang, S. M. Zhang, H. Wang, D. G. Zhao, J. J. Zhu, Z. S. Liu, D. S. Jiang, Y. X. Qiu, and H. Yang, J. Phys. D: Appl. Phys. 42, 235104 (2009).ADSCrossRefGoogle Scholar
  20. 20.
    Q. Wang, J. Bai, Y. P. Gong, and T. Wang, J. Phys. D: Appl. Phys. 44, 395102 (2011).ADSCrossRefGoogle Scholar
  21. 21.
    E. Y. Xie, Z. Z. Chen, P. R. Edwards, Z. Gong, N. Y. Liu, Y. B. Tao, Y. F. Zhang, Y. J. Chen, I. M. Watson, E. Gu, R. W. Martin, G. Y. Zhang, and M. D. Dawson, J. Appl. Phys. 112, 013107 (2012).ADSCrossRefGoogle Scholar
  22. 22.
    B. Monemar and G. Pozina, Progr. Quantum. Electron. 24, 239 (2000).ADSCrossRefGoogle Scholar
  23. 23.
    C. G. van de Walle and J. Neugebauer, Appl. Phys. Lett. 70, 2577 (1997).ADSCrossRefGoogle Scholar
  24. 24.
    L. Dong, J. V. Mantese, V. Avrutin, Ü. Özgür, H. Morkoç, and S. P. Alpay, J. Appl. Phys. 114, 043715 (2013).ADSCrossRefGoogle Scholar
  25. 25.
    S. Tomiya, S. Goto, M. Takeya, and M. Ikeda, Phys. Status Solidi A 200, 139 (2003).ADSCrossRefGoogle Scholar
  26. 26.
    S. Tomiya, M. Takeya, S. Goto, and M. Ikeda, Mater. Res. Soc. Symp. Proc. 831, E1.1 (2005).Google Scholar
  27. 27.
    S. V. Koveshnikov, E. B. Yakimov, N. A. Yarykin, and V. A. Yunkin, Phys. Status Solidi A 111, 81 (1989).ADSCrossRefGoogle Scholar
  28. 28.
    H. Amano, M. Kito, K. Hiramatsu, and I. Akasaki, Jpn. J. Appl. Phys. 28, L2112 (1989).ADSCrossRefGoogle Scholar
  29. 29.
    C. H. Seager, S. M. Myers, B. Vaandrager, and J. S. Nelson, Appl. Phys. Lett. 80, 2693 (2002).ADSCrossRefGoogle Scholar
  30. 30.
    H. Nykanen, S. Suihkonen, L. Kilanski, M. Sopanen, and F. Tuomisto, Appl. Phys. Lett. 100, 122105 (2012).ADSCrossRefGoogle Scholar
  31. 31.
    B. Sieber, Springer Proc. Phys. 120, 459 (2008).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  1. 1.Institute of Microelectronics Technology and High-Purity MaterialsRussian Academy of SciencesChernogolovka, Moscow oblastRussia
  2. 2.National University of Science and Technology “MISIS”MoscowRussia

Personalised recommendations