Advertisement

Semiconductors

, Volume 49, Issue 2, pp 199–208 | Cite as

Experimental determination of the electron effective masses and mobilities in each dimensionally-quantized subband in an In x Ga1 − x As quantum well with InAs inserts

  • V. A. KulbachinskiiEmail author
  • L. N. Oveshnikov
  • R. A. Lunin
  • N. A. Yuzeeva
  • G. B. Galiev
  • E. A. Klimov
  • P. P. Maltsev
Electronic Properties of Semiconductors

Abstract

HEMT structures with In0.53Ga0.47As quantum well are synthesized using molecular-beam epitaxy on InP substrates. The structures are double-side Si δ-doped so that two dimensionally-quantized subbands are occupied. The effect of the central InAs nanoinsert in the quantum well on the electron effective masses m* and mobilities in each subband is studied. For experimental determination of m*, the quantum μ q and transport μ t mobilities of the two-dimensional electron gas in each dimensionally-quantized subband, the Shubnikov-de Haas effect is measured at two temperatures of 4.2 and 8.4 K. The electron effective masses are determined by the temperature dependence of the oscillation amplitudes, separating the oscillations of each dimensionally-quantized subband. The Fourier spectra of oscillations are used to determine the electron mobilities μ q and μ t in each dimensionally-quantized subband. It is shown that m* decreases as the InAs-nanoinsert thickness d in the In0.53Ga0.47As quantum well and electron mobilities increase. The maximum electron mobility is observed at the insert thickness d = 3.4 nm.

Keywords

Quantum Well Electron Effective Mass Dimensional Electron InGaAs Layer Lower Subband 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Zhao, Y.-T. Chen, J. H. Yum, Y. Wang, F. Zhou, F. Xue, and J. C. Lee, Appl. Phys. Lett. 96, 102101 (2010).ADSCrossRefGoogle Scholar
  2. 2.
    J. A. del Alamo, Nature 479, 317 (2011).ADSCrossRefGoogle Scholar
  3. 3.
    X. Wallart, B. Pinsard, and F. Mollot, J. Appl. Phys. 97, 053706 (2005).ADSCrossRefGoogle Scholar
  4. 4.
    Dae-Hyun Kim and J. A. del Alamo, IEEE Electron. Dev. Lett. 31, 806 (2010).ADSCrossRefGoogle Scholar
  5. 5.
    Dong-Wan Roh, H. G. Lee, and D. W. Lee, J. Cryst. Growth 167, 468 (1996).ADSCrossRefGoogle Scholar
  6. 6.
    G. B. Galiev, I. S. Vasil’evskii, E. A. Klimov, V. G. Mokerov, and A. A. Cherechukin, Semiconductors 40, 1445 (2006).ADSCrossRefGoogle Scholar
  7. 7.
    K. Požela, A. Šilenas, J. Požela, V. Juciene, G. B. Galiev, I. S. Vasil’evskii, and E. A. Klimov, Appl. Phys. A 109, 233 (2012).ADSGoogle Scholar
  8. 8.
    V. A. Kulbachinskii, N. A. Yuzeeva, G. B. Galiev, E. A. Klimov, I. S. Vasil’evskii, R. A. Khabibullin, and D. S. Ponomarev, Semicond. Sci. Technol. 27, 035021 (2012).ADSCrossRefGoogle Scholar
  9. 9.
    J. Požela, K. Požela, V. Juciene, and A. Shkolnic, Semicond. Sci. Technol. 26, 014025 (2011).ADSCrossRefGoogle Scholar
  10. 10.
    Th. Zhu, H. Goronkin, G. N. Maracas, R. Droopad, and M. A. Stroscio, Appl. Phys. Lett. 60, 2141 (1992).ADSCrossRefGoogle Scholar
  11. 11.
    D. Xu, H. G. Heiss, S. A. Kraus, M. Sex, G. Bohm, G. Trankle, G. Weimann, and G. Abstreiter, IEEE Trans. Electron. Dev. 45, 21 (1998).ADSCrossRefGoogle Scholar
  12. 12.
    T. Akazaki, K. Arai, T. Enoki, and Y. Ishii, IEEE Electron Dev. Lett. 13, 325 (1992).ADSCrossRefGoogle Scholar
  13. 13.
    M. Sexl, G. Bohm, D. Xu, H. Heib, S. Kraus, G. Trankle, and G. Weimann, J. Cryst. Growth 175–176, 915 (1997).CrossRefGoogle Scholar
  14. 14.
    S. Bollaert, Y. Cordier, M. Zaknoune, T. Parenty, H. Happy, and A. Cappy, Ann. Telecommun. 56, 15 (2001).Google Scholar
  15. 15.
    I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, J. Appl. Phys. 89, 5815 (2001).ADSCrossRefGoogle Scholar
  16. 16.
    S. Ahmed, K. D. Holland, N. Paydavosi, C. M. S. Rogers, A. U. Alam, N. Neophytou, D. Kienle, and M. Vaidyanathan, IEEE Trans. Nanotechnol. 11, 1160 (2012).ADSCrossRefGoogle Scholar
  17. 17.
    D. Shoenberg, Magnetic Oscillations in Metals (Cambridge University Press, Cambridge, 1984; Mir, Moscow, 1986).CrossRefGoogle Scholar
  18. 18.
    T. W. Kim, D. U. Lee, D. C. Choo, M. Jung, K. H. Yoo, M. S. Song, T. Yeo, G. Comanescu, B. D. McCombe, and M. D. Kim, J. Appl. Phys. 89, 2649 (2001).ADSCrossRefGoogle Scholar
  19. 19.
    P. T. Coleridge, M. Hayne, P. Zawadzki, and A. S. Sachrajda, Surf. Sci. 361–362, 560 (1996).CrossRefGoogle Scholar
  20. 20.
    C. Diaz-Paniagua, M. A. Hidalgo, A. F. Brana, A. Urbina, F. Batallan, S. Fernandez de Avila, and F. Gonzalez-Sanz, Solid State Commun. 109, 785 (1999).ADSCrossRefGoogle Scholar
  21. 21.
    T. W. Kim and M. Jung, Solid State Commun. 111, 89 (1999).ADSCrossRefGoogle Scholar
  22. 22.
    T. Akazaki, J. Nitta, H. Takayanagi, T. Enoki, and K. Arai, J. Electron. Mater. 25, 745 (1996).ADSCrossRefGoogle Scholar
  23. 23.
    D. S. Ponomarev, I. S. Vasil’evskii, G. B. Galiev, E. A. Klimov, R. A. Khabibullin, V. A. Kulbachinskii, and N. A. Yuzeeva, Semiconductors 46, 484 (2012).ADSCrossRefGoogle Scholar
  24. 24.
    V. A. Kulbachinskii, N. A. Yuzeeva, G. B. Galiev, E. A. Klimov, I. S. Vasil’evskii, R. A. Khabibullin, and D. S. Ponomarev, Semicond. Sci. Technol. 27, 035021 (2012).ADSCrossRefGoogle Scholar
  25. 25.
    B. Jonsson and S. T. Eng, J. Quantum. Electron. 26, 2025 (1990).ADSCrossRefGoogle Scholar
  26. 26.
    Ch. Jirauschek, IEEE J. Quantum. Electron. 45, 1059 (2009).ADSCrossRefGoogle Scholar
  27. 27.
    V. A. Kulbachinskii, R. A. Lunin, V. G. Kytin, A. S. Bugaev, and A. P. Senichkin, J. Exp. Theor. Phys. 83, 841 (1996).ADSGoogle Scholar
  28. 28.
    J. F. Kaiser and W. A. Reed, Rev. Sci. Instrum. 49, 1103 (1978).ADSCrossRefGoogle Scholar
  29. 29.
    T. Ando, A. Fowler, and F. Stern, Rev. Mod. Phys. 54, 437 (1982).ADSCrossRefGoogle Scholar
  30. 30.
    A. Ishihara and L. Smrchka, J. Phys. C 19, 6777 (1986).ADSCrossRefGoogle Scholar
  31. 31.
    P. T. Coleridge, Phys. Rev. B 44, 3793 (1991).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • V. A. Kulbachinskii
    • 1
    • 3
    Email author
  • L. N. Oveshnikov
    • 1
  • R. A. Lunin
    • 1
  • N. A. Yuzeeva
    • 2
  • G. B. Galiev
    • 2
  • E. A. Klimov
    • 2
  • P. P. Maltsev
    • 2
  1. 1.Moscow State UniversityMoscowRussia
  2. 2.Institute of Ultrahigh Frequency Semiconductor ElectronicsRussian Academy of SciencesMoscowRussia
  3. 3.National Research Nuclear University “MEPhI”MoscowRussia

Personalised recommendations