Skip to main content
Log in

Experimental determination of the electron effective masses and mobilities in each dimensionally-quantized subband in an In x Ga1 − x As quantum well with InAs inserts

  • Electronic Properties of Semiconductors
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

HEMT structures with In0.53Ga0.47As quantum well are synthesized using molecular-beam epitaxy on InP substrates. The structures are double-side Si δ-doped so that two dimensionally-quantized subbands are occupied. The effect of the central InAs nanoinsert in the quantum well on the electron effective masses m* and mobilities in each subband is studied. For experimental determination of m*, the quantum μ q and transport μ t mobilities of the two-dimensional electron gas in each dimensionally-quantized subband, the Shubnikov-de Haas effect is measured at two temperatures of 4.2 and 8.4 K. The electron effective masses are determined by the temperature dependence of the oscillation amplitudes, separating the oscillations of each dimensionally-quantized subband. The Fourier spectra of oscillations are used to determine the electron mobilities μ q and μ t in each dimensionally-quantized subband. It is shown that m* decreases as the InAs-nanoinsert thickness d in the In0.53Ga0.47As quantum well and electron mobilities increase. The maximum electron mobility is observed at the insert thickness d = 3.4 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Zhao, Y.-T. Chen, J. H. Yum, Y. Wang, F. Zhou, F. Xue, and J. C. Lee, Appl. Phys. Lett. 96, 102101 (2010).

    Article  ADS  Google Scholar 

  2. J. A. del Alamo, Nature 479, 317 (2011).

    Article  ADS  Google Scholar 

  3. X. Wallart, B. Pinsard, and F. Mollot, J. Appl. Phys. 97, 053706 (2005).

    Article  ADS  Google Scholar 

  4. Dae-Hyun Kim and J. A. del Alamo, IEEE Electron. Dev. Lett. 31, 806 (2010).

    Article  ADS  Google Scholar 

  5. Dong-Wan Roh, H. G. Lee, and D. W. Lee, J. Cryst. Growth 167, 468 (1996).

    Article  ADS  Google Scholar 

  6. G. B. Galiev, I. S. Vasil’evskii, E. A. Klimov, V. G. Mokerov, and A. A. Cherechukin, Semiconductors 40, 1445 (2006).

    Article  ADS  Google Scholar 

  7. K. Požela, A. Šilenas, J. Požela, V. Juciene, G. B. Galiev, I. S. Vasil’evskii, and E. A. Klimov, Appl. Phys. A 109, 233 (2012).

    ADS  Google Scholar 

  8. V. A. Kulbachinskii, N. A. Yuzeeva, G. B. Galiev, E. A. Klimov, I. S. Vasil’evskii, R. A. Khabibullin, and D. S. Ponomarev, Semicond. Sci. Technol. 27, 035021 (2012).

    Article  ADS  Google Scholar 

  9. J. Požela, K. Požela, V. Juciene, and A. Shkolnic, Semicond. Sci. Technol. 26, 014025 (2011).

    Article  ADS  Google Scholar 

  10. Th. Zhu, H. Goronkin, G. N. Maracas, R. Droopad, and M. A. Stroscio, Appl. Phys. Lett. 60, 2141 (1992).

    Article  ADS  Google Scholar 

  11. D. Xu, H. G. Heiss, S. A. Kraus, M. Sex, G. Bohm, G. Trankle, G. Weimann, and G. Abstreiter, IEEE Trans. Electron. Dev. 45, 21 (1998).

    Article  ADS  Google Scholar 

  12. T. Akazaki, K. Arai, T. Enoki, and Y. Ishii, IEEE Electron Dev. Lett. 13, 325 (1992).

    Article  ADS  Google Scholar 

  13. M. Sexl, G. Bohm, D. Xu, H. Heib, S. Kraus, G. Trankle, and G. Weimann, J. Cryst. Growth 175–176, 915 (1997).

    Article  Google Scholar 

  14. S. Bollaert, Y. Cordier, M. Zaknoune, T. Parenty, H. Happy, and A. Cappy, Ann. Telecommun. 56, 15 (2001).

    Google Scholar 

  15. I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, J. Appl. Phys. 89, 5815 (2001).

    Article  ADS  Google Scholar 

  16. S. Ahmed, K. D. Holland, N. Paydavosi, C. M. S. Rogers, A. U. Alam, N. Neophytou, D. Kienle, and M. Vaidyanathan, IEEE Trans. Nanotechnol. 11, 1160 (2012).

    Article  ADS  Google Scholar 

  17. D. Shoenberg, Magnetic Oscillations in Metals (Cambridge University Press, Cambridge, 1984; Mir, Moscow, 1986).

    Book  Google Scholar 

  18. T. W. Kim, D. U. Lee, D. C. Choo, M. Jung, K. H. Yoo, M. S. Song, T. Yeo, G. Comanescu, B. D. McCombe, and M. D. Kim, J. Appl. Phys. 89, 2649 (2001).

    Article  ADS  Google Scholar 

  19. P. T. Coleridge, M. Hayne, P. Zawadzki, and A. S. Sachrajda, Surf. Sci. 361–362, 560 (1996).

    Article  Google Scholar 

  20. C. Diaz-Paniagua, M. A. Hidalgo, A. F. Brana, A. Urbina, F. Batallan, S. Fernandez de Avila, and F. Gonzalez-Sanz, Solid State Commun. 109, 785 (1999).

    Article  ADS  Google Scholar 

  21. T. W. Kim and M. Jung, Solid State Commun. 111, 89 (1999).

    Article  ADS  Google Scholar 

  22. T. Akazaki, J. Nitta, H. Takayanagi, T. Enoki, and K. Arai, J. Electron. Mater. 25, 745 (1996).

    Article  ADS  Google Scholar 

  23. D. S. Ponomarev, I. S. Vasil’evskii, G. B. Galiev, E. A. Klimov, R. A. Khabibullin, V. A. Kulbachinskii, and N. A. Yuzeeva, Semiconductors 46, 484 (2012).

    Article  ADS  Google Scholar 

  24. V. A. Kulbachinskii, N. A. Yuzeeva, G. B. Galiev, E. A. Klimov, I. S. Vasil’evskii, R. A. Khabibullin, and D. S. Ponomarev, Semicond. Sci. Technol. 27, 035021 (2012).

    Article  ADS  Google Scholar 

  25. B. Jonsson and S. T. Eng, J. Quantum. Electron. 26, 2025 (1990).

    Article  ADS  Google Scholar 

  26. Ch. Jirauschek, IEEE J. Quantum. Electron. 45, 1059 (2009).

    Article  ADS  Google Scholar 

  27. V. A. Kulbachinskii, R. A. Lunin, V. G. Kytin, A. S. Bugaev, and A. P. Senichkin, J. Exp. Theor. Phys. 83, 841 (1996).

    ADS  Google Scholar 

  28. J. F. Kaiser and W. A. Reed, Rev. Sci. Instrum. 49, 1103 (1978).

    Article  ADS  Google Scholar 

  29. T. Ando, A. Fowler, and F. Stern, Rev. Mod. Phys. 54, 437 (1982).

    Article  ADS  Google Scholar 

  30. A. Ishihara and L. Smrchka, J. Phys. C 19, 6777 (1986).

    Article  ADS  Google Scholar 

  31. P. T. Coleridge, Phys. Rev. B 44, 3793 (1991).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Kulbachinskii.

Additional information

Original Russian Text © V.A. Kulbachinskii, L.N. Oveshnikov, R.A. Lunin, N.A. Yuzeeva, G.B. Galiev, E.A. Klimov, P.P. Maltsev, 2015, published in Fizika i Tekhnika Poluprovodnikov, 2015, Vol. 49, No. 2, pp. 204–213.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulbachinskii, V.A., Oveshnikov, L.N., Lunin, R.A. et al. Experimental determination of the electron effective masses and mobilities in each dimensionally-quantized subband in an In x Ga1 − x As quantum well with InAs inserts. Semiconductors 49, 199–208 (2015). https://doi.org/10.1134/S1063782615020165

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782615020165

Keywords

Navigation