Semiconductors

, Volume 48, Issue 13, pp 1735–1741 | Cite as

Effect of an organic molecular coating on control over the conductance of carbon nanotube channel

  • I. I. Bobrinetskiy
  • A. V. Emelianov
  • V. K. Nevolin
  • A. V. Romashkin
Nanotechnology

Abstract

It is shown that the coating of carbon nanotubes with molecules with a constant dipole moment changes the conductance of the tubes due to a variation in the structure of energy levels that participate in charge transport. The I–V characteristics of the investigated structures exhibit significant dependence of the channel conductance on the gate potential. The observed memory effect of conductance level can be explained by the rearrangement of polar groups and molecules as a whole in an electric field. The higher the dipole moment per unit length and the weaker the intermolecular interaction, the faster the rearrangement process is

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yuehe Lin, Fang Lu, Yi Tu, and Zhifeng Ren, Nano Lett. 4, 191 (2004).ADSCrossRefGoogle Scholar
  2. 2.
    Lingtao Kong, Jin Wang, Tao Luo, Fanli Meng, et al., Analyst 135, 368 (2010).ADSCrossRefGoogle Scholar
  3. 3.
    A. Vlandas, T. Kurkina, A. Ahmad, et al., Anal. Chem. 82, 6090 (2010).CrossRefGoogle Scholar
  4. 4.
    Chao Li, Bo Lei, Wendy Fan, et al., J. Nanosci. Nanotechnol. 7, 138 (2007).Google Scholar
  5. 5.
    A. A. Granovsky, Firefly, version 7.1.G. http://www.classic.chem.msu.su/gran/firefly/index.html (Cited February 15, 2013).Google Scholar
  6. 6.
    J. J. P. Stewart, J. Mol. Model. 13, 1173 (2007).CrossRefGoogle Scholar
  7. 7.
    A. V. Krestinin, N. A. Kiselev, A. V. Raevskii, et al., Euras. Chem. Tech. J. 5, 7 (2003).Google Scholar
  8. 8.
    E. G. Rakov, Russ. Chem. Rev. 69, 35 (2000).ADSCrossRefGoogle Scholar
  9. 9.
    I. I. Bobrinetskii, Nanotechnol. Russia 4, 55 (2009).CrossRefGoogle Scholar
  10. 10.
    V. Y. Ushakov, Power Systems, 1 (2007).Google Scholar
  11. 11.
    Niraj Sinha, Jiazhi Ma, and J. T. W. Yeow, J. Nanosci. Nanotechnol. 6, 573 (2006).CrossRefGoogle Scholar
  12. 12.
    Th. J. Lane, D. Shukla, K. A. Beauchamp, and V. S. Pande, Curr. Opinion Struct. Biol. 23, 58 (2013).CrossRefGoogle Scholar
  13. 13.
    S. Heinze, J. Tersoff, R. Martel, V. Derycke, et al., Phys. Rev. Lett. 89, 106801 (2002).ADSCrossRefGoogle Scholar
  14. 14.
    V. de Renzi, R. Rousseau, D. Marchetto, et al., Phys. Rev. Lett. 95, 046804 (2005).ADSCrossRefGoogle Scholar
  15. 15.
    A. Javey, J. Guo, D. B. Farmer, Q. Wang, et al., Nano Lett. 4, 447 (2004).ADSCrossRefGoogle Scholar
  16. 16.
    F. Tournus, S. Latil, and M. I. Heggie, Phys. Rev. B 72, 075431 (2005).ADSCrossRefGoogle Scholar
  17. 17.
    Chongwu Zhou, Jing Kong, Erhan Yenilmez, and Hongjie Dai, Science 290, 1552 (2000).ADSCrossRefGoogle Scholar
  18. 18.
    K. Bradley, J.-Ch. P. Gabriel, A. Star, and G. Gruner, Appl. Phys. Lett. 83, 3821 (2003).ADSCrossRefGoogle Scholar
  19. 19.
    K. C. Gross, P. G. Seybold, and Ch. M. Hadad, Int. J. Quantum Chem. 90, 445 (2002).CrossRefGoogle Scholar
  20. 20.
    M. S. Fuhrer, B. M. Kim, T. Dürkop, and T. Brintlinger, Nano Lett. 2, 755 (2002).ADSCrossRefGoogle Scholar
  21. 21.
    Shinuk Cho, Jung Hwa Seo, Gi-Hwan Kim, et al., J. Mater. Chem. 22, 21238 (2012).CrossRefGoogle Scholar
  22. 22.
    N. Chandrakanthi and M. A. Careem, Polym. Bull. 44, 101 (2000).CrossRefGoogle Scholar
  23. 23.
    Wei Chen, Lin Duan, and Dongqiang Zhu, Environ. Sci. Technol. 41, 8295 (2007).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • I. I. Bobrinetskiy
    • 1
  • A. V. Emelianov
    • 1
  • V. K. Nevolin
    • 1
  • A. V. Romashkin
    • 1
  1. 1.National Research University “Moscow Institute of Electronic Technology” (MIET)MoscowRussia

Personalised recommendations