Advertisement

Semiconductors

, Volume 48, Issue 9, pp 1145–1150 | Cite as

Structural and optical properties of ZnO films produced by a nonvacuum chemical technique

  • V. V. Strelchuk
  • K. A. AvramenkoEmail author
  • A. S. Romaniuk
  • L. V. Zavyalova
  • G. S. Svechnikov
  • V. S. Khomchenko
  • N. M. Roshchina
  • V. M. Tkach
Electronic Properties of Semiconductors

Abstract

Zinc-oxide films are grown by a new nonvacuum chemical method: the pyrolysis of zinc acetylacetonate at a temperature of 280–300°C. The structural, phonon, and emission properties of the ZnO films are studied by X-ray diffraction analysis, scanning electron microscopy, Raman measurements, and photoluminescence spectroscopy. The high-intensity (0002) peak recorded in the X-ray diffraction spectra indicate the predominant orientation of crystallites in the (0001) direction in the ZnO films. From analysis of the E 2 high mode in the Raman spectrum of the ZnO films, the elastic strains ɛ zz (∼3.2 × 10−3) and the quality of the crystal structure are determined. The characteristics of the pyrolytic ZnO films are compared with the corresponding characteristics of ZnO films grown by molecular-beam epitaxy. As a result, the possibility of growing polycrystalline ZnO films of rather high quality by a practically feasible low-temperature technique is demonstrated.

Keywords

Raman Spectrum Molecular Beam Epitaxy Phonon Mode Metal Organic Chemical Vapor Deposition Metal Acetylacetonates 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. P. Schuler, M. M. Alkaisi, P. Miller, and R. J. Reeves, Microelectron. Eng. 83, 1403 (2006).CrossRefGoogle Scholar
  2. 2.
    M. Link, J. Weber, M. Schreiter, W. Wersing, O. Elmazria, and P. Alnot, Sens. Actuators B 121, 372 (2007).CrossRefGoogle Scholar
  3. 3.
    G. Ferblantier, F. Mailly, R. Al Asmar, A. Foucaran, and F. Pascal-Delannoy, Sens. Actuators A 122, 184 (2005).CrossRefGoogle Scholar
  4. 4.
    G. S. Svechnikov, L. V. Zavyalova, N. N. Roshchina, I. V. Prokopenko, L. I. Berezhinsky, V. S. Khomchenko, and O. S. Lytvyn, Semicond. Phys., Quant. Electron. Optoelectron. 7, 157 (2004).Google Scholar
  5. 5.
    N. M. Roshchina, P. S. Smertenko, V. G. Stepanov, L. V. Zavyalova, and O. S. Lytvyn, Solid State Phenom. 200, 3 (2013).CrossRefGoogle Scholar
  6. 6.
    L. F. Zharovsky, L. V. Zavjalova, and G. S. Svechnikov, Thin Solid Films 128, 241 (1985).ADSCrossRefGoogle Scholar
  7. 7.
    J. Stary, The Solvent Extraction of Metal Chelates (Pergamon, Oxford, 1964; Mir, Moscow, 1964), ch. 3, p. 215.Google Scholar
  8. 8.
    V. R. Shinde, T. P. Gujar, C. D. Lokhande, R. S. Mane, and Sung-Hwan Han, Mater. Chem. Phys. 96, 326 (2006).CrossRefGoogle Scholar
  9. 9.
    Xingyan Xu and Chuanbao Cao, J. Magn. Magn. Mater. 321, 2216 (2009).ADSCrossRefGoogle Scholar
  10. 10.
    V. V. Ratnikov, R. N. Kyutt, S. V. Ivanov, and M. P. Shcheglov, Semiconductors 44, 251 (2010).ADSCrossRefGoogle Scholar
  11. 11.
    L. El Mir, Z. Ben Ayadi, H. Rahmouni, J. El Ghoul, K. Djessas, and H. J. von Bardeleben, Thin Solid Films 517, 6007 (2009).ADSCrossRefGoogle Scholar
  12. 12.
    T. C. Damen, S. P. S. Porto, and B. Tell, Phys. Rev. 142, 570 (1966).ADSCrossRefGoogle Scholar
  13. 13.
    H. Harima, J. Phys.: Condens. Matter 14, R967 (2002).ADSGoogle Scholar
  14. 14.
    Th. Gruber, G. M. Prinz, C. Kirchner, R. Kling, F. Reuss, W. Limmer, and A. Waag, J. Appl. Phys. 96, 289 (2004).ADSCrossRefGoogle Scholar
  15. 15.
    T. Wermeling and R. Spolenak, J. Appl. Phys. 106, 064907 (2009).ADSCrossRefGoogle Scholar
  16. 16.
    V. E. Kaidashev, O. V. Misochko, M. R. Correia, M. Peres, T. Monteiro, N. A. Sobolev, and E. M. Kaidashev, Tech. Phys. Lett. 35, 1086 (2009).ADSCrossRefGoogle Scholar
  17. 17.
    R. H. Callender, S. S. Sussman, M. Selders, and R. K. Chang, Phys. Rev. B 7, 3788 (1973).ADSCrossRefGoogle Scholar
  18. 18.
    Xiaming Zhu, Huizhen Wu, Zijian Yuan, Jinfang Kong, and Wenzhong Shen, J. Raman. Spectrosc. 40, 2155 (2009).ADSCrossRefGoogle Scholar
  19. 19.
    K. Thonke, T. H. Gruber, N. Teofilov, R. Schonfelder, A. Waag, and R. Sauer, Physica B 308, 945 (2001).ADSCrossRefGoogle Scholar
  20. 20.
    D. M. Bagnall, Y. F. Chen, M. Y. Shen, Z. Zhu, T. Goto, and T. Yao, J. Cryst. Growth 184, 605 (1998).ADSCrossRefGoogle Scholar
  21. 21.
    F. H. Leiter, H. R. Alves, A. Hofstaetter, D. M. Hofmann, and B. K. Meyer, Phys. Status Solidi B 226, R4 (2001).ADSCrossRefGoogle Scholar
  22. 22.
    S. B. Zhang, S.-H. Wei, and A. Zunger, Phys. Rev. B 63, 075205 (2001).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • V. V. Strelchuk
    • 1
  • K. A. Avramenko
    • 1
    Email author
  • A. S. Romaniuk
    • 1
  • L. V. Zavyalova
    • 1
  • G. S. Svechnikov
    • 1
  • V. S. Khomchenko
    • 1
  • N. M. Roshchina
    • 1
  • V. M. Tkach
    • 2
  1. 1.Lashkarev Institute of Semiconductor PhysicsNational Academy of Sciences of UkraineKyivUkraine
  2. 2.Bakul Institute for Superhard MaterialsNational Academy of Sciences of UkraineKyivUkraine

Personalised recommendations