Advertisement

Semiconductors

, Volume 47, Issue 13, pp 1703–1706 | Cite as

Specific features of the structure and properties of carbon nanocolumns formed by low-temperature chemical vapor deposition

  • D. G. Gromov
  • N. I. Borgardt
  • R. L. Volkov
  • V. A. Galperin
  • Ya. S. Grishina
  • S. V. DubkovEmail author
Nanotechnology

Abstract

The process of the formation of column-shaped carbon nanostructures by plasma-enhanced chemical vapor deposition is explored. Carbon nanocolumns are formed at 250°C. The structure and properties of the structures are studied by atomic-force microscopy, scanning electron microscopy, transmission electron microscopy, and Raman spectroscopy. The electrical properties of the structures are investigated.

Keywords

nanocolumn chemical vapor deposition heterostructure graphene pyrolytic carbon nanostructure carbon 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. N. D’yachkov, Carbon Nanotubes: Structure, Properties, Application (BINOM, Laboratoriya znanii, Moscow, 2006) [in Russian].Google Scholar
  2. 2.
    E. G. Rakov, Nanotubes and Fullerens, The School-book (Universitetskaya kniga, Logos, Moscow, 2006) [in Russian].Google Scholar
  3. 3.
    B. E. Conway, Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications (Springer, 1999).CrossRefGoogle Scholar
  4. 4.
    Y. Wang and G. Cao, Adv. Mater. 20, 2251 (2008).CrossRefGoogle Scholar
  5. 5.
    P. Banerjee, I. Perez, L. Henn-Lecordier, et al., Nature Nanotechnol. 20, 292 (2009).ADSCrossRefGoogle Scholar
  6. 6.
    S. V. Dubkov, S. A. Gavrilov, D. G. Gromov, and G. A. Krasulin, Izv. Vyssh. Uchebn. Zaved., Elektron., No. 4, 28 (2010).Google Scholar
  7. 7.
    A. E. Mironov, D. G. Gromov, S. A. Gavrilov, and V. A. Galperin, Russ. J. Phys. Chem. A 87, 63 (2013).CrossRefGoogle Scholar
  8. 8.
    A. Ferrari and J. Robertson, Phil. Trans. R. Soc. London 362, 2477 (2004).ADSCrossRefGoogle Scholar
  9. 9.
    L. Li, H. Zhang, Y. Zhang, et al., Mater. Sci. Eng., 95 (2002).Google Scholar
  10. 10.
    F. Adar, Raman Spectroscopy of Carbon More Information Than You Would Think. http://www.modernmedicine.com. Spectroscopy. 2009.Google Scholar
  11. 11.
    A. Das, B. Chakraborty, and A. Sood, Bull. Mater. Sci. 31, 579 (2008).CrossRefGoogle Scholar
  12. 12.
    L. A. Giannuzzi, J. L. Drown, and S. R. Brown, Microsc. Res. Tech. 41, 285 (1998).CrossRefGoogle Scholar
  13. 13.
    R. L. Volkov, N. I. Borgardt, and V. N. Kukin, Bull. Russ. Acad. Sci.: Phys. 75, 1227 (2011).CrossRefGoogle Scholar
  14. 14.
    M. Wentzel, H. Gorzawski, K.-H. Naumann, et al., Aerosol Sci. 34, 1347 (2003).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • D. G. Gromov
    • 1
    • 2
  • N. I. Borgardt
    • 1
  • R. L. Volkov
    • 1
  • V. A. Galperin
    • 3
  • Ya. S. Grishina
    • 1
  • S. V. Dubkov
    • 1
    • 2
    Email author
  1. 1.National Research University of Electronic Technology “MIET”Zelenograd, MoscowRussia
  2. 2.“Electronic Devices and Systems” Ltd.Zelenograd, MoscowRussia
  3. 3.Research and Production Association “Technology Center”Zelenograd, MoscowRussia

Personalised recommendations