Advertisement

Semiconductors

, Volume 47, Issue 10, pp 1312–1315 | Cite as

Coupled plasma waves in a system of two two-dimensional superlattices in the presence of a quantizing electric field

  • S. Yu. GlazovEmail author
  • E. S. Kubrakova
  • N. E. Mescheryakova
Semiconductor Structures, Low-Dimensional Systems, and Quantum Phenomena

Abstract

The effect of a dc electric field on coupled plasma waves in a system of two two-dimensional super-lattices is studied. In the case of high temperatures, a dispersion relation is obtained and the fundamental and resonant modes of the plasma waves are numerically studied. The calculations are performed based on the quantum theory of plasma waves in the random phase approximation taking into account umklapp processes.

Keywords

Dispersion Relation Random Phase Approximation Periodic Potential Plasma Oscillation Single Particle Excitation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. H. Wannier, Phys. Rev. B 11, 432 (1960).MathSciNetCrossRefGoogle Scholar
  2. 2.
    V. A. Yakovlev, Sov. Phys. Solid State 3, 1442 (1961).Google Scholar
  3. 3.
    E. M. Epshtein, Sov. Phys. Semicond. 13, 815 (1979).Google Scholar
  4. 4.
    E. M. Epshtein, Sov. Phys. Solid State 21, 986 (1979).Google Scholar
  5. 5.
    H. K. Sy, Solid State Commun. 71, 769 (1989).ADSCrossRefGoogle Scholar
  6. 6.
    N. N. Beletskii, Sov. Phys. Semicond. 14, 332 (1980).Google Scholar
  7. 7.
    S. Yu. Glazov and S. V. Kryuchkov, Semiconductors 34, 807 (2000).ADSCrossRefGoogle Scholar
  8. 8.
    S. Yu. Glazov and S. V. Kryuchkov, Semiconductors 35, 444 (2001).ADSCrossRefGoogle Scholar
  9. 9.
    S. Yu. Glazov, Vestn. Voronezh. Gos. Tekh. Univ. 2(8), 102 (2006).Google Scholar
  10. 10.
    S. Yu. Glazov and E. S. Kubrakova, Bull. Russ. Acad. Sci.: Phys. 73, 1605 (2009).CrossRefzbMATHGoogle Scholar
  11. 11.
    S. Yu. Glazov and E. S. Kubrakova, Uch. Zap. Kazan. Univ., Ser. Fiz.-Mat. Nauki 152(2), 54 (2010).Google Scholar
  12. 12.
    S. Yu. Glazov, E. S. Kubrakova, and N. E. Meshcheryakova, Phys. Wave Phenom. 18, 313 (2010).CrossRefGoogle Scholar
  13. 13.
    E. M. Epshtein, Sov. Phys. Solid State 33, 806 (1991).Google Scholar
  14. 14.
    E. M. Epshtein and G. M. Shmelev, Phys. Status Solidi B 160, 179 (1990).ADSCrossRefGoogle Scholar
  15. 15.
    S. V. Tovstonog and V. E. Bisti, JETP Lett. 78, 722 (2003).ADSCrossRefGoogle Scholar
  16. 16.
    S. V. Tovstonog, I. V. Kukushkin, L. V. Kulik, and V. E. Kirpichev, JETP Lett. 76, 511 (2002).ADSCrossRefGoogle Scholar
  17. 17.
    I. A. Dmitriev and R. A. Suris, Semiconductors 36, 1375 (2002).ADSCrossRefGoogle Scholar
  18. 18.
    I. A. Dmitriev and R. A. Suris, Semiconductors 36, 1364 (2002).ADSCrossRefGoogle Scholar
  19. 19.
    S. Yu. Glazov and E. S. Kubrakova, Bull. Russ. Acad. Sci.: Phys. 75, 1616 (2011).CrossRefzbMATHGoogle Scholar
  20. 20.
    G. M. Gusev, Z. D. Kven, and V. B. Besman, Sov. Phys. Semicond. 26, 304 (1992).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • S. Yu. Glazov
    • 1
    Email author
  • E. S. Kubrakova
    • 1
  • N. E. Mescheryakova
    • 2
  1. 1.Volgograd State Social Pedagogical UniversityVolgogradRussia
  2. 2.Volgograd Institute of BusinessVolgogradRussia

Personalised recommendations