Skip to main content
Log in

Analysis of light-induced degradation mechanisms in α-Si:H/μc-Si:H solar photovoltaics

  • Physics of Semiconductor Devices
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The photoinduced degradation of the i-α-Si:H layer in tandem photovoltaic converters based on α-Si:H/μc-Si:H structures is analyzed in terms of the “H-collision-” and “floating-bond” models and modifications of these. It is shown that the form of the degradation dependence is well described by all models under consideration. Compared with the modified models, the original “H-collision-” and “floating-bond” models yield estimates for saturated dangling-bond concentrations, which are always dependent on the intensity of the light that caused the degradation. The modified “floating-bond” model makes it possible to exclude this dependence, and the modified “H-collision” model describes the occurrence of this dependence in a certain range of illumination intensities and its absence in another range, which is in best agreement with experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. R. Wronsky, Mater. Res. Soc. Symp. Proc. 469, 7 (1997).

    Article  Google Scholar 

  2. D. L. Staebler and C. R. Wronski, Appl. Phys. Lett. 31, 292 (1977).

    Article  ADS  Google Scholar 

  3. A. Kolodziej, Optoelectron. Rev. 12, 21 (2004).

    MathSciNet  Google Scholar 

  4. X. Deng, M. Izu, K. L. Narasimhan, and S. R. Ovshinsky, Mater. Res. Soc. Symp. Proc. 336, 699 (1994).

    Article  Google Scholar 

  5. A. Luque and S. Hegedus, Handbook of Photovoltaic Science and Engineering (Wiley, 2003), p. 551.

    Book  Google Scholar 

  6. W. Luft, B. van Roedem, B. Stafford, and L. Mrig, in Proceedings of the 23rd IEEE Photovoltaic Specialists Conference, Louisville (IEEE, New York, 1993), p. 158.

    Google Scholar 

  7. V. M. Emelyanov, A. S. Abramov, A. V. Bobyl, A. S. Gudovskikh, D. L. Orekhov, E. I. Terukov, N. Kh. Timoshina, O. I. Chostaa, and M. Z. Shvarts, Semiconductors 47, 679 (2013).

    Article  ADS  Google Scholar 

  8. N. Ishii, M. Kumeda, and T. Shimizu, Jpn. J. Appl. Phys. 24, L244 (1985).

    Article  ADS  Google Scholar 

  9. D. Redfield and R. H. Bube, Phys. Rev. Lett. 65, 464 (1990).

    Article  ADS  Google Scholar 

  10. D. Adler, Solar Cells 9, 133 (1983).

    Article  ADS  Google Scholar 

  11. D. Adler, J. de Phys. 42, C4–3 (1981).

    Google Scholar 

  12. M. Stutzmann, W. B. Jackson, and C. C. Tsai, Phys. Rev. B 32, 23 (1985).

    Article  ADS  Google Scholar 

  13. T. Shimizu and M. Kumeda, Jpn. J. Appl. Phys. 35, L816 (1996).

    Article  ADS  Google Scholar 

  14. T. Shimizu, R. Durny, and M. Kumeda, Mater. Res. Soc. Symp. Proc. 420, 553 (1996).

    Article  Google Scholar 

  15. T. Shimizu and M. Kumeda, Jpn. J. Appl. Phys. 38, L911 (1999).

    Article  ADS  Google Scholar 

  16. R. Biswas, Y. P. Li, and B. C. Pan, Mater. Res. Soc. Symp. Proc. 609, A3.5 (2000).

    Article  Google Scholar 

  17. H. M. Branz, Solid State Commun. 105, 387 (1998).

    Article  ADS  Google Scholar 

  18. H. M. Branz, Phys. Rev. B 59, 5498 (1999).

    Article  ADS  Google Scholar 

  19. H. M. Branz, Sol. Energy Mater. Solar Cells 78, 425 (2003).

    Article  Google Scholar 

  20. T. Shimizu, Jpn. J. Appl. Phys. 43, 3257 (2004).

    Article  ADS  Google Scholar 

  21. K. C. Palinginis, J. D. Cohen, S. Guha, and J. Yang, Phys. Rev. B 63, 201203 (2001).

    Article  ADS  Google Scholar 

  22. N. H. Nickel and W. B. Jackson, Phys. Rev. B 51, 4872 (1995).

    Article  ADS  Google Scholar 

  23. Z. Y. Wu, J. M. Siefert, and B. Equer, J. Non-Cryst. Solids 137-138, 227 (1991).

    Article  ADS  Google Scholar 

  24. M. J. Powell, R. B. Wehrspohn, and S. C. Deane, J. Non-Cryst. Sol. 299-302, 556 (2002).

    Article  ADS  Google Scholar 

  25. M. S. Brandt, M. W. Bayerl, M. Stutzmann, and C. F. O. Graef, J. Non-Cryst. Sol. 227–230, 343 (1998).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Emelyanov.

Additional information

Original Russian Text © V.M. Emelyanov, A.S. Abramov, A.V. Bobyl, V.N. Verbitsky, A.S. Gudovskikh, E.M. Ershenko, S.A. Kudryashov, E.I. Terukov, O.I. Chosta, M.Z. Shvarts, 2013, published in Fizika i Tekhnika Poluprovodnikov, 2013, Vol. 47, No. 9, pp. 1264–1269.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Emelyanov, V.M., Abramov, A.S., Bobyl, A.V. et al. Analysis of light-induced degradation mechanisms in α-Si:H/μc-Si:H solar photovoltaics. Semiconductors 47, 1252–1257 (2013). https://doi.org/10.1134/S1063782613090066

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782613090066

Keywords

Navigation