Advertisement

Semiconductors

, Volume 47, Issue 5, pp 641–646 | Cite as

Conductivity switching effect in MIS structures with silicon-based insulators, fabricated by low-frequency plasma-enhanced chemical vapor deposition methods

  • A. E. BerdnikovEmail author
  • V. N. Gusev
  • A. A. Mironenko
  • A. A. Popov
  • A. V. Perminov
  • A. C. Rudy
  • V. D. Chernomordick
Semiconductor Structures, Low-Dimensional Systems, and Quantum Phenomena

Abstract

The current-voltage characteristics of MIS (metal-insulator-semiconductor) structures with insulators based on silicon oxide, fabricated by low-frequency (55 kHz) plasma-enhanced chemical vapor deposition are studied. A specific feature of the used insulators is that there are inclusions of particles of other materials with narrower band gaps present. It is found that such structures possess the property of bipolar conductivity switching. The MIS structures with a multilayer insulator containing additional nanoscale siliconnitride layers exhibit the best characteristics of the conductivity switching effect.

Keywords

Silicon Nitride Double Barrier Silicon Excess Silicon Nitride Layer Phase Change Random Access Memory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. T. Kolomiets, G. A. Andreeva, N. P. Kalmykova, E. A. Lebedev, I. A. Taksami, and V. Kh. Shpunt, Prib. Sist. Upravl. 4, 27 (1980).Google Scholar
  2. 2.
    V. A. Rozhkov and M. B. Shalimova, Semiconductors 27, 245 (1993).ADSGoogle Scholar
  3. 3.
    V. B. Baiburin, Yu. P. Volkov, and V. A. Rozhkov, Tech. Phys. Lett. 24, 463 (1998).ADSCrossRefGoogle Scholar
  4. 4.
    D. S. Jeong, H. Schroeder, and R. Waser, Electrochem. Solid State Lett. 10, 51 (2007).CrossRefGoogle Scholar
  5. 5.
    K. Terabe, T. Hasegawa, T. Nakayama, and M. Aono, Nature 433, 47 (2005).ADSCrossRefGoogle Scholar
  6. 6.
    W. Wu, G.-Y. Jung, D. L. Olynick, J. Straznicky, Z. Li, X. Li, D. A. A. Ohlberg, Y. Chen, S.-Y. Wang, J. A. Liddle, W. M. Tong, and R. Stanley Williams, Appl. Phys. A 80, 1173 (2005).CrossRefGoogle Scholar
  7. 7.
    J. C. Scott and L. D. Bozano, Adv. Mater. 19, 1452 (2007).CrossRefGoogle Scholar
  8. 8.
    M.-J. Lee, Ch. B. Lee, D. Lee, et al., Nature Mater. 10, 625 (2011).ADSCrossRefGoogle Scholar
  9. 9.
    A. A. Orlikovskii, A. E. Berdnikov, A. A. Mironenko, A. A. Popov, V. D. Chernomordik, and A. V. Perminov, RF Patent No. 2449416 (2012).Google Scholar
  10. 10.
    M. D. Efremov, V. A. Volodin, D. V. Marin, S. A. Arzhannikova, G. N. Kamaev, S. A. Kochubei, and A. A. Popov, Semiconductors 42, 202 (2008).ADSCrossRefGoogle Scholar
  11. 11.
    S. M. Sze, Physics of Semiconductor Devices (Wiley, New York, 1981; Energiya, Moscow, 1973).Google Scholar
  12. 12.
    A. N. Razzhuvalov and S. N. Grinyaev, Semiconductors 42, 580 (2008).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • A. E. Berdnikov
    • 1
    Email author
  • V. N. Gusev
    • 1
  • A. A. Mironenko
    • 1
  • A. A. Popov
    • 1
  • A. V. Perminov
    • 1
  • A. C. Rudy
    • 1
  • V. D. Chernomordick
    • 1
  1. 1.Yaroslavl Branch of the Institute of Physics and TechnologyRussian Academy of SciencesYaroslavlRussia

Personalised recommendations