, Volume 47, Issue 4, pp 457–463 | Cite as

Influence of irradiation with γ-ray photons on the photoluminescence of Cd0.9Zn0.1Te crystals preliminarily subjected to the intense radiation of a neodymium laser

  • K. D. Glinchuk
  • A. P. Medvid’
  • A. M. Mychko
  • Yu. M. Naseka
  • A. V. Prokhorovich
  • O. M. StrilchukEmail author
Spectroscopy, Interaction with Radiation


The effect of the preliminary treatment of Cd0.9Zn0.1Te crystals with high-power pulses of neodymium laser radiation (the power density is ≤1.8 MW/cm2, at a wavelength of 532 nm) on the low-temperature (5 K) photoluminescence induced by γ-ray radiation (the dose was Φγ = 5 kGy) is studied. The luminescence bands are related to radiation-stimulated donor-acceptor pairs, which include shallow neutral donors and neutral cadmium vacancies stimulated by γ-ray irradiation, the transition of free electrons to neutral cadmium vacancies formed by radiation, and the annihilation of excitons bound to the above vacancies. It is shown that, in the crystals preliminarily treated with laser radiation, the intensity of the γ-ray-stimulated luminescence bands is significantly lower than in crystals not subjected to laser radiation. This fact is accounted for by a decrease in the concentration of cadmium vacancies generated by the γ-ray radiation as a result of their annihilation during the course of their interaction with laser-stimulated defects, in particular, as a consequence of their recombination at laser-stimulated interstitial cadmium atoms.


Laser Radiation Luminescence Band Neodymium Laser Irradiate Crystal Elementary Radiation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. G. Krylyuk, D. V. Korbutyak, Yu. V. Kryuchenko, I. M. Kupchak, and N. D. Vakhnyak, J. Alloys. Comp. 371, 142 (2004).CrossRefGoogle Scholar
  2. 2.
    K. D. Glinchuk, N. M. Litovchenko, Yu. N. Naseka, A. V. Prohorovich, L. V. Rashkovetskyi, O. N. Strilchuk, F. F. Sizov, O. O. Voitsihovska, and B. O. Danilchenko, Ukr. J. Phys. 55, 776 (2010).Google Scholar
  3. 3.
    Q. Li, W. Jie, Z. Gu, G. Yang, T. Wang, and J. Zhang, J. Cryst. Growth 265, 159 (2004).ADSCrossRefGoogle Scholar
  4. 4.
    A. Medvid’, L. Fedorenko, B. Korbytjak, S. Kryluk, M. Yusupov, and A. Mychko, Rad. Meas. 42, 701 (2007).CrossRefGoogle Scholar
  5. 5.
    K. Hjelt, M. Juvonen, T. Tuomi, S. Nenonen, E. Eissler, and M. Bavdaz, Phys. Status Solidi A 162, 747 (1997).ADSCrossRefGoogle Scholar
  6. 6.
    T. E. Schlesinger, J. E. Toney, H. Yoon, E. Y. Lee, B. A. Branett, and R. B. James, Mater. Sci. Eng. R 32, 103 (2001).CrossRefGoogle Scholar
  7. 7.
    Q. Li, W. Jie, L. Fu, G. Yang, G. Zha, T. Wang, and D. Zeng, J. Appl. Phys. 100, 013518 (2006).ADSCrossRefGoogle Scholar
  8. 8.
    K. D. Glinchuk, N. M. Litovchenko, and O. N. Strilchuk, Semicond. Phys. Quantum. Electron. Optoelectron. 6, 121 (2003).Google Scholar
  9. 9.
    K. D. Glinchuk, N. M. Litovchenko, A. V. Prokhorovich, and O. N. Strilchuk, in Optoelectronics and Semiconductor Techniques, Collection of Works (Nauk. Dumka, Kiev, 2008), No. 43, p. 44 [in Russian].Google Scholar
  10. 10.
    L. S. Smirnov, Physical Processes in Irradiated Semiconductors (Nauka, Novosibirsk, 1977) [in Russian].Google Scholar
  11. 11.
    V. V. Emtsev and T. V. Mashovets, Impurities and Point Defects in Semiconductors (Radio i svyaz’, Moscow, 1981) [in RussianGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • K. D. Glinchuk
    • 1
  • A. P. Medvid’
    • 2
  • A. M. Mychko
    • 2
  • Yu. M. Naseka
    • 1
  • A. V. Prokhorovich
    • 1
  • O. M. Strilchuk
    • 1
    Email author
  1. 1.Lashkarev Institute of Semiconductor PhysicsNational Academy of Sciences of UkraineKyivUkraine
  2. 2.Riga Technical UniversityRigaLatvia

Personalised recommendations