Skip to main content
Log in

Effect of Bi isovalent dopants on the formation of homogeneous coherently strained InAs quantum dots in GaAs matrices

  • Semiconductor Structures, Low-Dimensional Systems, and Quantum Phenomena
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The distribution of hydrostatic strains in Bi3+-doped InAs quantum dots embedded in a GaAs matrix are calculated in the context of the deformation-potential model. The dependences of strains in the material of spherical InAs quantum dots with substitutional (Bi → As) and interstitial (Bi) impurities on the quantum-dot size are derived. The qualitative correlation of the model with the experiment is discussed. The data on the effect of doping on the morphology of self-assembled InAs:Bi quantum dots in a GaAs matrix are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. E. Vorob’ev, V. Yu. Panevin, N. K. Fedosov, D. A. Firsov, V. A. Shalygin, A. D. Andreev, Yu. B. Samsonenko, A. A. Tonkikh, G. E. Cirlin, N. V. Kryzhanovskaya, V. M. Ustinov, S. Hanna, A. Seilmeier, N. D. Zakharov, and P. Werner, Semiconductors 39, 41 (2005).

    Article  ADS  Google Scholar 

  2. V. V. Svetukhin, S. V. Bulyarskii, and D. V. Sanchishchin, Tech. Phys. Lett. 30, 220 (2004).

    Article  ADS  Google Scholar 

  3. N. N. Ledentsov, V. M. Ustinov, V. A. Shchukin, P. S. Kop’ev, Zh. I. Alferov, and D. Bimberg, Semiconductors 32, 343 (1998).

    Article  ADS  Google Scholar 

  4. V. P. Evtikhiev, O. V. Konstantinov, A. V. Matveentsev, and A. E. Romanov, Semiconductors 36, 74 (2002).

    Article  ADS  Google Scholar 

  5. N. N. Ledentsov, V. A. Schukin, T. Kettler, K. Posilovic, D. Bimberg, L. Y. Karachinsky, A. Y. Gladyshev, M. V. Maximov, L. I. Novikov, Y. M. Shernakov, A. E. Zhukov, V. M. Ustinov, and A. R. Kovsh, J. Cryst. Growth 301, 914 (2007).

    Article  ADS  Google Scholar 

  6. B. V. Novikov, G. G. Zegrya, R. M. Peleshchak, O.O. Dan’kiv, V. A. Gaisin, V. G. Talalaev, I. V. Shtorm, and G. E. Cirlin, Semiconductors 42, 1076 (2008).

    Article  ADS  Google Scholar 

  7. V. A. Shchukin and D. Bimberg, Appl. Phys. A 67, 687 (1998).

    Article  ADS  Google Scholar 

  8. V. G. Dubrovskii, Yu. G. Musikhin, G. E. Cirlin, V. A. Egorov, N. K. Polyakov, Yu. B. Samsonenko, A. A. Tonkikh, N. V. Kryzhanovskaya, N. V. Bert, and V. M. Ustinov, Semiconductors 38, 329 (2004).

    Article  ADS  Google Scholar 

  9. V. F. Osipov, F. Schenitt, S. A. Kukushkin, and P. Hess, Appl. Surf. Sci. 188, 156 (2002).

    Article  ADS  Google Scholar 

  10. V. G. Dubrovskii, G. E. Cirlin, and V. M. Ustinov, Phys. Rev. B 68, 075409 (2003).

    Article  ADS  Google Scholar 

  11. V. G. Dubrovskii and N. V. Sibirev, Tech. Phys. Lett. 31, 161 (2005).

    Article  Google Scholar 

  12. V. K. Bazhenov and V. I. Fistul’, Sov. Phys. Semicond. 18, 843 (1984).

    Google Scholar 

  13. S. K. Guba and I. V. Kurilo, Function. Mater. 8, 234 (2001).

    Google Scholar 

  14. R. D. Vengrenovich, Yu. V. Gudyma, and S. V. Yarema, Semiconductors 35, 1378 (2001).

    Article  ADS  Google Scholar 

  15. V. G. Talalaev, B. V. Novikov, S. Yu. Verbin, A. B. Novikov, D. Sh. Tkhak, G. Gobsh, R. Gol’dkhan, N. Shtein, A. Golombek, G. E. Cirlin, V. N. Petrov, V. M. Ustinov, A. E. Zhukov, and A. Yu. Egorov, Semiconductors 34, 453 (2000).

    Article  ADS  Google Scholar 

  16. G. Chris, van de Walle, Phys. Rev. B 39, 1871 (1989).

    Article  ADS  Google Scholar 

  17. V. A. Shchukin, N. N. Ledentsov, P. S. Kop’ev, and D. Bimberg, Phys. Rev. Lett. 75, 2968 (1995).

    Article  ADS  Google Scholar 

  18. Z. M. Wang, K. Holmes, Yu. I. Mazyr, and G. J. Salamo, Appl. Phys. Lett. 84, 1931 (2004).

    Article  ADS  Google Scholar 

  19. A. Qteish and R. J. Needs, Phys. Rev. B 45, 1317 (1992).

    Article  ADS  Google Scholar 

  20. K. Teodosiu, Elastic Models of Crystal Defects (Springer, Berlin, Heidelberg, New York, 1982; Mir, Moscow, 1985).

    Google Scholar 

  21. N. Moll, M. Scheffler, and E. Pehlke, Phys. Rev. B 58, 4566 (1998).

    Article  ADS  Google Scholar 

  22. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 7: Theory of Elasticity (Nauka, Moscow, 1982; Pergamon Press, New York, 1986).

    Google Scholar 

  23. A. M. Kosevich, Theory of Crystal Lattice (Vishcha Shkola, Kiev, 1988) [in Russian].

    Google Scholar 

  24. V. I. Emel’yanov and I. M. Panin, Phys. Solid State 39, 1815 (1997).

    Article  ADS  Google Scholar 

  25. B. N. Zvonkov, I. A. Karpovich, N. V. Baidus’, D. O. Filatov, and S. V. Morozov, Semiconductors 35, 93 (2001).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Guba.

Additional information

Original Russian Text © R.M. Peleshchak, S.K. Guba, O.V. Kuzyk, I.V. Kurilo, O.O. Dankiv, 2013, published in Fizika i Tekhnika Poluprovodnikov, 2013, Vol. 47, No. 3, pp. 324–328.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peleshchak, R.M., Guba, S.K., Kuzyk, O.V. et al. Effect of Bi isovalent dopants on the formation of homogeneous coherently strained InAs quantum dots in GaAs matrices. Semiconductors 47, 349–353 (2013). https://doi.org/10.1134/S1063782613030196

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782613030196

Keywords

Navigation