Advertisement

Semiconductors

, Volume 47, Issue 2, pp 279–284 | Cite as

Tunnel field-effect transistors with graphene channels

  • D. A. Svintsov
  • V. V. VyurkovEmail author
  • V. F. Lukichev
  • A. A. Orlikovsky
  • A. Burenkov
  • R. Oechsner
IX International Conference “Silicon-2012”, St. Petersburg, July 29-13, 2012

Abstract

The lack of an OFF-state has been the main obstacle to the application of graphene-based transistors in digital circuits. Recently vertical graphene tunnel field-effect transistors with a low OFF-state current have been reported; however, they exhibited a relatively weak effect of gate voltage on channel conductivity. We propose a novel lateral tunnel graphene transistor with the channel conductivity effectively controlled by the gate voltage and the subthreshold slope approaching the thermionic limit. The proposed transistor has a semiconductor (dielectric) tunnel gap in the channel operated by gate and exhibits both high ON-state current inherent to graphene channels and low OFF-state current inherent to semiconductor channels.

Keywords

Gate Voltage Tunnel Current Dirac Point Drain Voltage Hexagonal Boron Nitride 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009).ADSCrossRefGoogle Scholar
  2. 2.
    E. McCann and V. I. Fal’ko, Phys. Rev. Lett. 96, 086805 (2006).ADSCrossRefGoogle Scholar
  3. 3.
    L. Britnell et al., Science 335, 947 (2012).ADSCrossRefGoogle Scholar
  4. 4.
    N. Kharche and S. K. Nayak, Nano Lett. 11, 5274 (2011).ADSCrossRefGoogle Scholar
  5. 5.
    K. Kim et al., Nature 479, 7373 (2011).Google Scholar
  6. 6.
    M. Shur, Physics of Semiconductor Devices (Pentice-Hall, Englewood Clifs, NJ, 1990).Google Scholar
  7. 7.
    R. Geick, C. H. Perry, and G. Rupprecht, Phys. Rev. 146, 543 (1966).ADSCrossRefGoogle Scholar
  8. 8.
    E. O. Kane, J. Appl. Phys. 32, 83 (1961).MathSciNetADSzbMATHCrossRefGoogle Scholar
  9. 9.
    L. V. Keldysh, Sov. Phys. JETP 6, 33 (1958).Google Scholar
  10. 10.
    A. Schenk, Solid State Electron. 36, 1 (1993).CrossRefGoogle Scholar
  11. 11.
    L. F. Mao, J. L. Wei, Ch. H. Tan, and M. Zh. Xu, Solid State Commun. 114, 383 (2000).ADSCrossRefGoogle Scholar
  12. 12.
    J. Shannon and K. Nieuwestee, Appl. Phys. Lett. 62, 1815 (1993).ADSCrossRefGoogle Scholar
  13. 13.
    S. Xiong, T. King, and J. Bokor, IEEE Trans. Electron. Dev. 52, 8 (2005).Google Scholar
  14. 14.
    R. A. Vega, IEEE Trans. Electron. Dev. 53, 7 (2006).CrossRefGoogle Scholar
  15. 15.
    Q. Zhang, T. Fang, H. Xing, A. Seabaugh, and D. Jena, IEEE Electron. Dev. Lett. 54, 10 (2008).Google Scholar
  16. 16.
    A. C. Seabaugh and Q. Zhang, Proc. IEEE 98, 12 (2010).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • D. A. Svintsov
    • 1
  • V. V. Vyurkov
    • 1
    Email author
  • V. F. Lukichev
    • 1
  • A. A. Orlikovsky
    • 1
  • A. Burenkov
    • 2
  • R. Oechsner
    • 2
  1. 1.Institute of Physics and TechnologyRussian Academy of SciencesMoscowRussia
  2. 2.Fraunhofer Institute of Integrated Systems and Device TechnologyErlangenGermany

Personalised recommendations