Advertisement

Semiconductors

, Volume 47, Issue 1, pp 66–72 | Cite as

On the theory of the photoelectric effect in surface-graded-gap semiconductors

  • V. A. Kholodnov
Semiconductor Structures, Low-Dimensional Systems, and Quantum Phenomena

Abstract

A correct mathematical model of interband carrier photogeneration by low-intensity optical radiation in surface-graded-gap semiconductors is constructed and analytically considered for the case of strong, including step-like, variations in the graded-gap field in the transition region adjacent to the homogeneous layer. The dependence of the degree of the blocking of surface-photocarrier recombination on the parameters of the graded-gap surface layer is analyzed. The conditions for achieving the limiting efficiency of the photoelectric response of semiconductors to low-intensity optical radiation due to the graded-gap surface layer are determined.

Keywords

Surface Recombination Photoelectric Effect Jump Point Drift Length Step Profile 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zh. I. Alferov, Usp. Fiz. Nauk 172, 1072 (2002).Google Scholar
  2. 2.
    A. Kramer, Usp. Fiz. Nauk 172, 1087 (2002).CrossRefGoogle Scholar
  3. 3.
    A. M. Vasil’ev and A. P. Landsman, Semiconductor Photoconverters (Sov. Radio, Moscow, 1971), Ch. 2, pt. 4, p. 36; pt. 6, p. 46 [in Russian].Google Scholar
  4. 4.
    V. I. Il’in, S. F. Musikhin, and A. Ya. Shik, Semiconductors with Graded Band-Gap and Heterostructures (Nauka, St.-Petersburg, 2000), Ch. 1, pts. 1.1–1.4; Ch. 4, pt. 4.1 [in Russian].Google Scholar
  5. 5.
    G. V. Tsarenkov, Sov. Phys. Semicond. 9, 166 (1975).Google Scholar
  6. 6.
    O. V. Konstantinov and G. V. Tsarenkov, Sov. Phys. Semicond. 10, 427 (1976).Google Scholar
  7. 7.
    B. S. Sokolovskii, Semiconductors 30, 535 (1996).ADSGoogle Scholar
  8. 8.
    V. A. Byvalyi, A. S. Volkov, Yu. A. Gol’dberg, A. G. Dmitriev, and B. V. Tsarenkov, Sov. Phys. Semicond. 13, 651 (1979).Google Scholar
  9. 9.
    B. S. Sokolovskii, V. I. Ivanov-Omskii, and G. A. Il’chuk, Semiconductors 39, 1361 (2005).ADSCrossRefGoogle Scholar
  10. 10.
    R. F. Kazarinov and G. V. Tsarenkov, Sov. Phys. Semicond. 10, 178 (1976).Google Scholar
  11. 11.
    V. A. Kholodnov and A. A. Drugova, Tech. Phys. Lett. 27, 504 (2001).ADSCrossRefGoogle Scholar
  12. 12.
    V. G. Savitskii and B. S. Sokolovskii, Semiconductors 31, 1 (1997).ADSCrossRefGoogle Scholar
  13. 13.
    A. Drugova, V. Kholodnov, and M. Nikitin, Phys. Status Solidi C 2, 1212 (2005).ADSCrossRefGoogle Scholar
  14. 14.
    V. M. Osadchii, A. O. Suslyakov, V. V. Vasil’ev, and S. A. Dvoretskii, Semiconductors 33, 297 (1999).ADSCrossRefGoogle Scholar
  15. 15.
    R. Smith, Semiconductors (Cambridge Univ. Press, London, New York, Melburne, 1978; Mir, Moscow, 1982), Ch. 7, pt. 7.3, p. 207; ch. 10, pt. 10.9, p. 380.Google Scholar
  16. 16.
    H. Auth, D. Genzow, and K. Herrmann, Photoelectric Phenomena (Academie-Verlag, Berlin, 1977; Mir, Moscow, 1980), ch. 3, pt. 3.3, p. 68.Google Scholar
  17. 17.
    V. A. Kholodnov, Semiconductors 30, 538 (1996).ADSGoogle Scholar
  18. 18.
    V. A. Kholodnov, JETP Lett. 67, 685 (1998).ADSCrossRefGoogle Scholar
  19. 19.
    V. A. Kholodnov, Tech. Phys. Lett. 36, 744 (2010).CrossRefGoogle Scholar
  20. 20.
    V. P. Ponomarenko, Phys. Usp. 46, 629 (2003).ADSCrossRefGoogle Scholar
  21. 21.
    K. D. Mynbaev and V. I. Ivanov-Omskii, Semiconductors 40, 1 (2006).ADSCrossRefGoogle Scholar
  22. 22.
    G. V. Chekanova, A. A. Drugova, V. A. Kholodnov, and M. S. Nikitin, Proc. SPIE 7113, 1A (2008).Google Scholar
  23. 23.
    A. I. Izhnin, I. I. Izhnin, K. D. Mynbaev, V. I. Ivanov-Omskii, N. L. Bazhenov, V. A. Smirnov, V. S. Varavin, N. N. Mikhailov, and G. Yu. Sidorov, Tech. Phys. Lett. 35, 147 (2009).ADSCrossRefGoogle Scholar
  24. 24.
    A. M. Filachev, I. I. Taubkin, and M. A. Trishekov, Modern State and Main Direction of Solid State Photoelectronics Development (Fizmatkniga, Moscow, 2010), pt. 4, § 4.2, p. 42 [in Russian].Google Scholar
  25. 25.
    P. Migliorato and A. M. White, Solid State Electron. 26, 65 (1983).ADSCrossRefGoogle Scholar
  26. 26.
    D. L. Smith, Appl. Phys. Lett. 45, 83 (1984).ADSCrossRefGoogle Scholar
  27. 27.
    G. Korn and T. Korn, Mathematical Handbook for Scientists and Engineers (Nauka, Moscow, 1968; McGraw- Hill, New York, Toronto, London, 1961), ch. 21, p. 676.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  1. 1.Kotel’nikov Institute of Radio Engineering and ElectronicsRussian Academy of SciencesMoscowRussia

Personalised recommendations