Semiconductors

, Volume 46, Issue 4, pp 519–527

Operation of a semiconductor opening switch at ultrahigh current densities

  • S. K. Lyubutin
  • S. N. Rukin
  • B. G. Slovikovsky
  • S. N. Tsyranov
Physics of Semiconductor Devices

DOI: 10.1134/S106378261204015X

Cite this article as:
Lyubutin, S.K., Rukin, S.N., Slovikovsky, B.G. et al. Semiconductors (2012) 46: 519. doi:10.1134/S106378261204015X

Abstract

The operation of a semiconductor opening switch (SOS diode) at cutoff current densities of tens of kA/cm2 is studied. In experiments, the maximum reverse current density reached 43 kA/cm2 for ∼40 ns. Experimental data on SOS diodes with a p+-p-n-n+ structure and a p-n junction depth from 145 to 180 μm are presented. The dynamics of electron-hole plasma in the diode at pumping and current cutoff stages is studied by numerical simulation methods. It is shown that current cutoff is associated with the formation of an electric field region in a thin (∼45 μm) layer of the structure’s heavily doped p-region, in which the acceptor concentration exceeds 1016 cm−3, and the current cutoff process depends weakly on the p-n junction depth.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • S. K. Lyubutin
    • 1
  • S. N. Rukin
    • 1
  • B. G. Slovikovsky
    • 1
  • S. N. Tsyranov
    • 1
    • 2
  1. 1.Institute of Electrophysics, Ural BranchRussian Academy of SciencesYekaterinburgRussia
  2. 2.Ural Federal UniversityYekaterinburgRussia

Personalised recommendations