Advertisement

Semiconductors

, Volume 46, Issue 1, pp 109–116 | Cite as

Transverse current rectification in a graphene-based superlattice

  • D. V. Zavialov
  • V. I. Konchenkov
  • S. V. KruchkovEmail author
Carbon Systems

Abstract

A model of the energy spectrum of a superlattice based on graphene overlying a substrate of periodically arranged layers of different insulators is proposed. For such a structure, the dc current component induced by an elliptically polarized electromagnetic wave and directed normally to the sweeping field is calculated. The dependence of the transverse current density on the strengths of the sweeping electric field and the elliptically polarized wave components is analyzed.

Keywords

Dirac Point Silicon Carbide Substrate Charge Carrier Motion Miniband Width Transverse Current Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306, 666 (2004).CrossRefADSGoogle Scholar
  2. 2.
    A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. No- voselov, and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009).CrossRefADSGoogle Scholar
  3. 3.
    Y. Q. Wu, P. D. Ye, M. A. Capano, Y. Xuan, Y. Sui, M. Qi, J. A. Cooper, T. Shen, D. Pandey, G. Prakash, and R. Reifenberger, Appl. Phys. Lett. 92, 092102 (2008).CrossRefADSGoogle Scholar
  4. 4.
    T. Mueller, F. Xia, and P. Avouris, Nature Photon. 4, 297 (2010).CrossRefGoogle Scholar
  5. 5.
    Yi Zheng, Guang-Xin Ni, Sukang Bae, et al., Eur. Phys. Lett. 93, 17002 (2011).CrossRefADSGoogle Scholar
  6. 6.
    M. Barbier, F. M. Peeters, P. Vasilopoulos, and J. M. Pereira, Jr., Phys. Rev. B 77, 115446 (2008).CrossRefADSGoogle Scholar
  7. 7.
    M. Barbier, P. Vasilopoulos, and F. M. Peeters, Phil. Trans. R. Soc. A 368, 5499 (2010).CrossRefzbMATHADSMathSciNetGoogle Scholar
  8. 8.
    J. M. Pereira, Jr., F. M. Peeters, A. Chaves, and G. A. Farias, Semicond. Sci. Technol. 25, 033002 (2010).CrossRefADSGoogle Scholar
  9. 9.
    Li-Gang Wang and Xi Chen, cond-mat/1008.0504.v1.Google Scholar
  10. 10.
    M. Ramezani Masir, P. Vasilopoulos, A. Matulis, and F. M. Peeters, Phys. Rev. B 77, 235443 (2008).CrossRefADSGoogle Scholar
  11. 11.
    L. A. Chernozatonskii, P. B. Sorokin, E. E. Belova, J. Bryuning, and A. S. Fedorov, JETP Lett. 85, 77 (2007).CrossRefADSGoogle Scholar
  12. 12.
    A. Isacsson, L. M. Jonsson, J. M. Kinaret, and M. Jonson, Phys. Rev. B 77, 035423 (2008).CrossRefADSGoogle Scholar
  13. 13.
    H. Sevincli, M. Topsakal, and S. Ciraci, Phys. Rev. B 178, 245402 (2008).CrossRefADSGoogle Scholar
  14. 14.
    D. Bolmatov and Chung-Yu Mou, J. Exp. Theor. Phys. 112, 102 (2011).CrossRefADSGoogle Scholar
  15. 15.
    Y. Pan, N. Jiang, J. T. Sun, et al., condmat/0709.2858.Google Scholar
  16. 16.
    P. V. Ratnikov, JETP Lett. 90, 469 (2009).CrossRefADSGoogle Scholar
  17. 17.
    S. Y. Zhou, G.-H. Gweon, A. V. Fedorov, P. N. First, W. A. de Haar, D.-H. Lee, F. Guinea, A. H. Castro Neto, and A. Lanzara, Nature Mater. 6, 770 (2007).CrossRefADSGoogle Scholar
  18. 18.
    G. Giovannetti, P. A. Khomyakov, G. Brocks, P. J. Kelly, and J. van der Brink, Phys. Rev. B 76, 073103 (2007).CrossRefADSGoogle Scholar
  19. 19.
    P. R. Wallace, Phys. Rev. 71, 622 (1947).CrossRefzbMATHADSGoogle Scholar
  20. 20.
    S. Reich, J. Maultzsch, C. Thomsen, and P. Ordejón, Phys. Rev. B 66, 035412 (2002).CrossRefADSGoogle Scholar
  21. 21.
    S. V. Kryuchkov, E. I. Kukhar’, and V. A. Yakovenko, Izv. RAN, Ser. Fiz. 74, 1759 (2010).Google Scholar
  22. 22.
    P. E. Gill, W. Murray, and M. H. Wright, Practical Optimization (Academic, London, New York, 1981; Mir, Moscow, 1985).zbMATHGoogle Scholar
  23. 23.
    A. P. Silin, Sov. Phys. Usp. 147, 972 (1985).CrossRefADSGoogle Scholar
  24. 24.
    F. G. Bass, A. A. Bulgakov, and A. P. Tetervov, High Frequency Properties of Semiconductors with Superlattices (Nauka, Moscow, 1989) [in Russian].Google Scholar
  25. 25.
    D. V. Zav’yalov, V. I. Konchenkov, and S. V. Kryuchkov, Phys. Solid State 51, 2157 (2009).CrossRefADSGoogle Scholar
  26. 26.
    D. V. Zav’yalov, S. V. Kryuchkov, and E. V. Marchuk, Tech. Phys. Lett. 34, 915 (2008).CrossRefADSGoogle Scholar
  27. 27.
    D. V. Zav’yalov, S. V. Kryuchkov, and T. A. Tyul’kina, Semiconductors 44, 879 (2010).CrossRefADSGoogle Scholar
  28. 28.
    G. M. Shmelev and G. I. Tsurkan, and Nguen Khong Shon, Izv. Vyssh. Uchebn. Zaved., Fiz. 28(2), 84 (1985).Google Scholar
  29. 29.
    Nguyen Hong Shon and Vo Hohg Anh, Phys. Status Solidi B 134, 363 (1986).CrossRefADSGoogle Scholar
  30. 30.
    S. Mensa, G. M. Shmelev, and E. M. Epshtein, Izv. Vyssh. Uchebn. Zaved., Fiz. 31, 112 (1988).Google Scholar
  31. 31.
    K. Seeger, Appl. Phys. Lett. 76, 82 (2000).CrossRefADSGoogle Scholar
  32. 32.
    D. V. Zav’yalov, S. V. Kryuchkov, and E. I. Kukhar’, Opt. Spectrosc. 100, 916 (2006).CrossRefADSGoogle Scholar
  33. 33.
    A. V. Shorokhov, N. N. Khvastunov, T. Hyart, and K. N. Alekssev, J. Exp. Theor. Phys. 111, 822 (2010)].CrossRefADSGoogle Scholar
  34. 34.
    J. Karch, P. Olbrich, M. Schmalzbauer, et al., condmat/1002.1047v1.Google Scholar
  35. 35.
    J. Karch, P. Olbrich, M. Schmalzbauer, et al., condmat/1008.2116v1.Google Scholar
  36. 36.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 5: Statistical Physics (Nauka, Moscow, 1976; Pergamon, Oxford, 1980), pt. 1, ch. 5, p. 187.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • D. V. Zavialov
    • 1
  • V. I. Konchenkov
    • 1
  • S. V. Kruchkov
    • 1
    • 2
    Email author
  1. 1.Volgograd State Pedagogical UniversityVolgogradRussia
  2. 2.Volgograd State Technical UniversityVolgogradRussia

Personalised recommendations