Spin interference of holes in silicon nanosandwiches

Abstract

Spin-dependent transport of holes is studied in silicon nanosandwiches on an n-Si (100) surface which are represented by ultranarrow p-Si quantum wells confined by δ-barriers heavily doped with boron. The measurement data of the longitudinal and Hall voltages as functions of the top gate voltage without an external magnetic field show the presence of edge conduction channels in the silicon nanosandwiches. An increase in the stabilized source-drain current within the range 0.25–5 nA subsequently exhibits the longitudinal conductance value 4e 2/h, caused by the contribution of the multiple Andreev reflection, the value 0.7(2e 2/h) corresponding to the known quantum conductance staircase feature, and displays Aharonov-Casher oscillations, which are indicative of the spin polarization of holes in the edge channels. In addition, at a low stabilized source-drain current, due to spin polarization, a nonzero Hall voltage is detected which is dependent on the top gate voltage; i. e., the quantum spin Hall effect is observed. The measured longitudinal I–V characteristics demonstrate Fiske steps and a negative differential resistance caused by the generation of electromagnetic radiation as a result of the Josephson effect. The results obtained are explained within a model of topological edge states which are a system of superconducting channels containing quantum point contacts transformable to single Josephson junctions at an increasing stabilized source-drain current.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    T. M. Klapwijk, J. Superconduct.: Incorp. Novel Magn. 17, 593 (2004).

    Article  ADS  Google Scholar 

  2. 2.

    C. W. J. Beenakker and H. van Houten, Phys. Rev. Lett. 66, 3056 (1991).

    Article  ADS  Google Scholar 

  3. 3.

    P. Jarillo-Herrero, J. A. van Dam, and L. P. Kouwenhoven, Nature 439, 953 (2006).

    Article  ADS  Google Scholar 

  4. 4.

    Jie Xiang, A. Vidan, M. Tinkham, R. M. Westervelt, and Ch. Lieber, Nature Nanotechnol. 1, 208 (2006).

    Article  ADS  Google Scholar 

  5. 5.

    N. T. Bagraev, L. E. Klyachkin, A. A. Kudryavtsev, A. M. Malyarenko, and V. V. Romanov, Semiconductors 43, 1441 (2009).

    Article  Google Scholar 

  6. 6.

    N. T. Bagraev, L. E. Klyachkin, A. A. Kudryavtsev, A. M. Malyarenko, G. A. Oganesyan, and D. S. Poloskin, Semiconductors 43, 1455 (2009).

    Article  Google Scholar 

  7. 7.

    N. T. Bagraev, W. Gehlhoff, L. E. Klyachkin, A. A. Kudryavtsev, A. M. Malyarenko, G. A. Oganesyan, D. S. Poloskin, and V. V. Romanov, Physica C 486, 840 (2008).

    Article  ADS  Google Scholar 

  8. 8.

    N. T. Bagraev, L. E. Klyachkin, A. A. Kudryavtsev, A. M. Malyarenko, and V. V. Romanov, in Superconductivity — Theory and Applications, Ed. by A. Luiz (Croatia, SCIYO, 2010), ch. 4, p. 69.

    Google Scholar 

  9. 9.

    N. T. Bagraev, N. G. Galkin, W. Gehlhoff, L. E. Klyachkin, and A. M. Molyarenko, J. Phys.: Condens. Matter 20, 164202 (2008).

    Article  ADS  Google Scholar 

  10. 10.

    N. T. Bagraev, N. G. Galkin, W. Gehlhoff, L. E. Klyachkin, A. M. Malyarenko, and I. A. Shelykh, J. Phys.: Condens. Matter 18,L1 (2006).

  11. 11.

    B. Andrei Bernevig, T. L. Hughes, and Shou-Cheng Zhang, Science 314, 1757 (2006).

    Article  ADS  Google Scholar 

  12. 12.

    K. S. Novoselov, Z. Jiang, Y. Zhang, S. V. Morozov, H. L. Stormer, V. Zeitler, J. C. Maan, G. S. Boebinger, P. Kim, and A. K. Geim, Science 315, 1379 (2007).

    Article  ADS  Google Scholar 

  13. 13.

    C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 226801 (2005).

    Article  ADS  Google Scholar 

  14. 14.

    C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 146802 (2005).

    Article  ADS  Google Scholar 

  15. 15.

    L. Fu, C. L. Kane, and E. J. Mele, Phys. Rev. Lett. 98, 1066803 (2007).

    Article  Google Scholar 

  16. 16.

    J. E. Moore and L. Balents, Phys. Rev. B 75, 121306 (2007).

    Article  ADS  Google Scholar 

  17. 17.

    R. Roy, Phys. Rev. B 79, 195322 (2009).

    Article  ADS  Google Scholar 

  18. 18.

    N. T. Bagraev, O. N. Gimbitskaya, L. E. Klyachkin, A. A. Kudryavtsev, A. M. Malyarenko, V. V. Romanov, A. I. Ryskin, and A. S. Shcheulin, Semiconductors 44, 1328 (2010).

    Article  ADS  Google Scholar 

  19. 19.

    N. T. Bagraev, O. N. Guimbitskaya, L. E. Klyachkin, A. A. Kudryavtsev, A. M. Malyarenko, V. V. Romanov, A. I. Ryskin, I. A. Shelykh, and A. S. Shcheulin, Physica C 470, 893 (2010).

    Article  ADS  Google Scholar 

  20. 20.

    B. I. Halperin, Phys. Rev. B 25, 2185 (1982).

    Article  ADS  MathSciNet  Google Scholar 

  21. 21.

    R. B. Laughlin, Rev. Mod. Phys. 71, 863 (1999).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  22. 22.

    M. Buttiker, Science 325, 278 (2009).

    Article  Google Scholar 

  23. 23.

    M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).

    Article  ADS  Google Scholar 

  24. 24.

    S. Datta and B. Das, Appl. Phys. Lett. 56, 665 (1990).

    Article  ADS  Google Scholar 

  25. 25.

    M. Buttiker, Phys. Rev. B 38, 9375 (1988).

    Article  ADS  MathSciNet  Google Scholar 

  26. 26.

    S. Datta, Electronic Transport in Mesoscopic Systems (Cambrige Univ. Press, Cambrige, 1995).

    Google Scholar 

  27. 27.

    A. Ghosh, C. J. B. Ford, M. Pepper, H. E. Beere, and D. A. Ritchie, Phys. Rev. Lett. 92, 116601 (2004).

    Article  ADS  Google Scholar 

  28. 28.

    N. T. Bagraev, V. K. Ivanov, L. E. Klyachkin, and I. A. Shelykh, Phys. Rev. B 70, 155315 (2004).

    Article  ADS  Google Scholar 

  29. 29.

    N. T. Bagraev, W. Gehlhoff, L. E. Klyachkin, A. Naeser, and S. A. Rykov, Def. Dif. Forum 143–147, 1003 (1997).

    Article  Google Scholar 

  30. 30.

    N. T. Bagraev, A. D. Bouravleuv, W. Gehlhoff, L. E. Klyachkin, A. M. Malyarenko, and S. A. Rykov, Def. Dif. Forum 194–199, 673 (2001).

    Article  Google Scholar 

  31. 31.

    W. Frank, U. Gosele, H. Mehrer, and A. Seeger, Diffusion in Crystalline Solids, Ed. by G. E. Murch and A. S. Nowick (Academic Press, New York, 1984).

    Google Scholar 

  32. 32.

    N. T. Bagraev, A. D. Buravlev, L. E. Klyachkin, A. M. Malyarenko, V. Gel’khoff, V. K. Ivanov, and I. A. Shelykh, Semiconductors 36, 439 (2002).

    Article  ADS  Google Scholar 

  33. 33.

    P. S. Zalm, Rep. Progr. Phys. 58, 1321 (1995).

    Article  ADS  Google Scholar 

  34. 34.

    W. Gehlhoff, N. T. Bagraev, and L. E. Klyachkin, Mater. Sci. Forum 196, 467 (1995).

    Article  Google Scholar 

  35. 35.

    I. A. Shelykh, N. T. Bagraev, and L. E. Klyachkin, Semiconductors 37, 1390 (2003).

    Article  ADS  Google Scholar 

  36. 36.

    T. J. Thornton, M. Pepper, H. Ahmed, D. Andrews, and G. J. Davies, Phys. Rev. Lett. 56, 1198 (1986).

    Article  ADS  Google Scholar 

  37. 37.

    D. A. Wharam, T. J. Thornton, R. Newbury, M. Pepper, H. Ahmed, J. E. F. Frost, E. G. Hasko, E. C. Peacock, D. A. Ritchie, and G. A. C. Jones, J. Phys. C 21, L209 (1988).

  38. 38.

    B. J. van Wees, H. van Houten, C. W. J. Beenakker, J. G. Williamson, L. P. Kouwenhoven, D. van der Marel, and C. T. Foxon, Phys. Rev. Lett. 60, 848 (1988).

    Article  ADS  Google Scholar 

  39. 39.

    M. J. M. de Jong and C. W. J. Beenakker, Phys. Rev. Lett. 74, 1657 (1995).

    Article  ADS  Google Scholar 

  40. 40.

    K. J. Thomas, J. T. Nicholls, M. Y. Simmons, M. Pepper, D. R. Mace, and D. A. Ritchie, Phys. Rev. Lett. 77, 135 (1996).

    Article  ADS  Google Scholar 

  41. 41.

    A. C. Graham, D. L. Sawkey, M. Pepper, M. Y. Simmons, and D. A. Ritchie, Phys. Rev. B 75, 035331 (2007).

    Google Scholar 

  42. 42.

    D. D. Awschalom, D. Loss, and N. Samarth, Semiconductor Spintronics and Quantum Computations (Springer-Verlag, Berlin, 2002).

    Google Scholar 

  43. 43.

    I. A. Shelykh, N. T. Bagraev, N. G. Galkin, and L. E. Klyachkin, Phys. Rev. B 71, 113311 (2005).

    Article  ADS  Google Scholar 

  44. 44.

    R. Winkler, Phys. Rev. B 62, 4245 (2000).

    Article  ADS  Google Scholar 

  45. 45.

    R. Winkler, H. Noh, E. Tutuc, and M. Shayegan, Phys. Rev. B 65, 155303 (2002).

    Article  ADS  Google Scholar 

  46. 46.

    I. A. Shelykh, N. G. Galkin, and N. T. Bagraev, Phys. Rev. B 72, 235316 (2005).

    Article  ADS  Google Scholar 

  47. 47.

    Dzh. Clark, Usp. Fiz. Nauk 104, 95 (1971).

    Google Scholar 

  48. 48.

    K. Kadowaki, H. Yamaguchi, K. Kawamata, T. Yamamoto, H. Minami, I. Kakeya, U. Welp, L. Ozyuzer, A. E. Koshelev, C. Kurter, K. E. Gray, and W.-K. Kwok, Physica C 486, 634 (2008).

    Article  ADS  Google Scholar 

  49. 49.

    M. D. Fiske, Rev. Mod. Phys. 36, 221 (1964).

    Article  ADS  Google Scholar 

  50. 50.

    I. M. Dmitrienko, I. K. Yanson, and V. M. Svistunov, Sov. Phys. JETP 47, 1404 (1964).

    Google Scholar 

  51. 51.

    I. O. Kulik, JETP Lett. 2, 134 (1965).

    Google Scholar 

  52. 52.

    B. D. Josephson, Rev. Mod. Phys. 36, 216 (1964).

    Article  ADS  Google Scholar 

  53. 53.

    A. A. Abrikosov, Fundamentals of the Theory of Metals (Nauka, Moscow, 1987; North-Holland, Amsterdam, 1988).

    Google Scholar 

  54. 54.

    L. Ozyuzer, A. E. Koshelev, C. Kurter, N. Gopalsami, Q. Li, M. Tachiki, K. Kadowaki, T. Yamamoto, H. Yamaguchi, T. Tachiki, K. E. Gray, W.-K. Kwok, and U. Welp, Science 318, 1291 (2007).

    Article  ADS  Google Scholar 

  55. 55.

    A. Roth, C. Brune, H. Buhmann, L. W. Molenkamp, J. Maciejko, Xiao-Liang Qi, and Shou-Cheng Zhang, Science 325, 294 (2009).

    Article  ADS  Google Scholar 

  56. 56.

    A. D. Kent, Nature 442, 143 (2006).

    Article  ADS  Google Scholar 

  57. 57.

    E. V. Kuchis, Galvanomagnetic Effects and Methods of Their Investigation (Radio i svyaz’, Moscow, 1990) [in RUssian].

    Google Scholar 

  58. 58.

    N. T. Bagraev, V. A. Mashkov, E. Yu. Danilovsky, W. Gehlhoff, D. S. Gets, L. E. Klyachkin, A. A. Kudryavtsev, R. V. Kuzmin, A. M. Malyarenko, and V. V. Romanov, Appl. Mag. Res. 39, 113 (2010).

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to N. T. Bagraev.

Additional information

Original Russian Text © N.T. Bagraev, E.Yu. Danilovskii, L.E. Klyachkin, A.M. Malyarenko, V.A. Mashkov, 2012, published in Fizika i Tekhnika Poluprovodnikov, 2012, Vol. 46, No. 1, pp. 77–89.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bagraev, N.T., Danilovskii, E.Y., Klyachkin, L.E. et al. Spin interference of holes in silicon nanosandwiches. Semiconductors 46, 75–86 (2012). https://doi.org/10.1134/S1063782612010034

Download citation

Keywords

  • Spin Polarization
  • Drain Current
  • Topological Insulator
  • Negative Differential Resistance
  • Andreev Reflection