Skip to main content

Germanium subcells for multijunction GaInP/GaInAs/Ge solar cells


Photovoltaic converters based on n-GaInP/n-p-Ge heterostructures grown by the OMVPE under different conditions of formation of the p-n junction are studied. The heterostructures are intended for use as narrow-gap subcells of the GaInP/GaInAs/Ge three-junction solar cells. It is shown that, in Ge p-tn junctions, along with the diffusion mechanism, the tunneling mechanism of the current flow exists; therefore, the two-diode electrical equivalent circuit of the Ge p-n junction is used. The diode parameters are determined for both mechanisms from the analysis of both dark and “light” current-voltage dependences. It is shown that the elimination of the component of the tunneling current allows one to increase the efficiency of the Ge subcell by ∼1% with conversion of nonconcentrated solar radiation. The influence of the tunneling current on the efficiency of the Ge-based devices can be in practice reduced to zero at photogenerated current density of ∼1.5 A/cm2 due to the use of the concentrated solar radiation.

This is a preview of subscription content, access via your institution.


  1. 1.

    Zh. I. Alferov, V. M. Andreev, and V. D. Rumyantsev, Fiz. Tekh. Poluprovodn. 38, 937 (2004) [Semiconductors 38, 899 (2004)].

    Google Scholar 

  2. 2.

    Zh. I. Alferov, V. M. Andreev, M. B. Kagan, I. I. Protasov, and V. G. Trofim, Fiz. Tekh. Poluprovodn. 4, 1826 (1970) [Sov. Phys. Semicond. 4, 785 (1970)].

    Google Scholar 

  3. 3.

    J. M. Olson, S. R. Kurtz, A. E. Kibbler, and P. Faine, in Proc. of the 21st IEEE PVSC (Kissimmee, 1990), vol. 1, p. 24.

    Google Scholar 

  4. 4.

    P. K. Chiang, D. D. Krut, B. T. Cavicchi, K. A. Bertness, S. R. Kurtz, and J. M. Olson, in Proc. of the 1st World Conf. on Photovoltaic Energy Conv. (1994), p. 2120.

  5. 5.

    P. K. Chiang, J. H. Ermer, W. T. Nishikawa, D. D. Krut, D. E. Joslin, J. W. Eldredge, B. T. Cavicchi, and J. M. Olson, in Proc. of the 25th IEEE PVSC (Washington, D.C., 1996), p. 183.

  6. 6.

    R. R. King, N. H. Karam, J. H. Ermer, M. Haddad, P. Colter, T. Isshiki, H. Yoon, H. L. Cotal, D. E. Joslin, D. D. Krut, R. Sudharsanan, K. Edmondson, B. T. Cavicchi, and D. R. Lillington, in Proc. of the 28th IEEE PVSC (Anchorage, 2000), p. 998.

  7. 7.

    M. Z. Shvarts, P. Y. Gazaryan, N. A. Kalyuzhnyy, V. P. Khvostikov, V. M. Lantratov, S. A. Mintairov, S. V. Sorokina, and N. Kh. Timoshina, in Proc. of the 21st EPSEC (Dresden, Germany, 2006), p. 133.

  8. 8.

    D. C. Law, D. Bhusari, S. Mesropian, J. C. Boisvert, W. D. Hong, A. Boca, D. C. Larrabee, C. M. Fetzer, R. R. King, and N. H. Karam, in Proc. of the 34th IEEE PVSC (Philadelphia, PA, 2009).

  9. 9.

    M. Stan, D. Aiken, B. Cho, A. Cornfeld, J. Diaz, A. Korostyshevsky, V. Ley, P. Patel, P. Sharps, and T. Varghese, in Proc. of the PVSC’08, 33rd IEEE (2008), p. 1.

  10. 10.

    W. Shockley, Bell System Tech. J. 28, 435 (1949).

    Google Scholar 

  11. 11.

    S. M. Sze, Physics of Semiconductor Devices (Wiley, 1981; Mir, Moscow, 1984), ch. 14.2.

  12. 12.

    F. S. Goucher, G. L. Pearson, M. Sparks, G. K. Teal, and W. Shockley, Phys. Rev. 81, 637 (1951).

    Article  ADS  Google Scholar 

  13. 13.

    Tunneling Phenomena in Solids, Ed. by E. Burstein and S. Lundqvist (Plenum, New York, 1969; Mir, Moscow, 1973), ch. 5.

    Google Scholar 

  14. 14.

    R. A. Smith, Semiconductors (Cambridge Univ., Cambridge, 1959; Inostr. Liter., Moscow, 1962).

    MATH  Google Scholar 

  15. 15.

    M. Z. Shvarts, O. I. Chosta, V. A. Grilikhes, V. D. Runyantsev, A. A. Soluyanov, J. Vanbegin, G. Smekens, and V. M. Andreev, in Proc. of the 31th IEEE PVSC (Lake Buena Vista, FL, 2005), p. 818.

  16. 16.

    B. L. Sharma and R. K. Purohit, Semiconductor Heterojunctions (Pergamon, Oxford, 1974; Sov. Radio, Moscow, 1979), ch. 1. 1.

    Google Scholar 

  17. 17.

    R. Stratton, in Tunneling Phenomena in Solids, Ed. by E. Burstein and S. Lundqvist (Plenum, New York, 1969; Mir, Moscow, 1973), ch. 8.

    Google Scholar 

  18. 18.

    N. A. Kalyuzhnyy, V. M. Lantratov, S. A. Mintairov, M. A. Mintairov, M. Z. Shvarts, N. Kh. Timoshina, and V. M. Andreev, in Proc. of the 23th EPSEC (Valencia, 2008), p. 803.

  19. 19.

    N. A. Kalyuzhnyy, S. A. Mintairov, M. A. Mintairov, and V. M. Lantratov, in Proc. of the 24th EPSEC (Hamburg, Germany, 2009), p. 538.

  20. 20.

    R. P. Nanavati, An Introduction to Semiconductor Electronics (McGraw-Hill, New York, 1963; Svyaz’, Moscow, 1965).

    Google Scholar 

  21. 21.

    J. I. Pankove, Optical Processes in Semiconductors (Prentice-Hall, Englewood Cliffs, NJ, 1971; Mir, Moscow, 1973), appl. 2.

    Google Scholar 

  22. 22.

    S. A. Mintairov, V. M. Andreev, V. M. Emel’yanov, N. A. Kalyuzhnyy, N. K. Timoshina, M. Z. Shvarts, and V. M. Lantratov, Fiz. Tekh. Poluprovodn. 44, 1118 (2010).

    Google Scholar 

  23. 23.

    Y. P. Varshni, Physica 34, 149 (1967).

    Article  ADS  Google Scholar 

  24. 24.

    A. G. Milnes and D. L. Feucht, Heterojunctions and Metal-Semiconductor Junctions (Wiley, New York, London, 1972; Mir, Moscow, 1975), ch. 2.

    Google Scholar 

  25. 25.

    V. M. Andreev, V. V. Evstropov, V. S. Kalinovskii, V. M. Lantratov, and V. P. Khvostikov, Fiz. Tekh. Poluprovodn. 43, 671 (2009) [Semiconductors 43, 644 (2009)].

    Google Scholar 

  26. 26.

    V. M. Lantratov, N. A. Kalyuzhnyy, S. A. Mintairov, N. Kh. Timoshina, M. Z. Shvarts, and V. M. Andreev, Fiz. Tekh. Poluprovodn. 41, 751 (2007) [Semiconductors 41, 727 (2007)].

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to N. A. Kalyuzhnyy.

Additional information

Original Russian Text © N.A. Kalyuzhnyy, A.S. Gudovskikh, V.V. Evstropov, V.M. Lantratov, S.A. Mintairov, N.Kh. Timoshina, M.Z. Shvarts, V.M. Andreev, 2010, published in Fizika i Tekhnika Poluprovodnikov, 2010, Vol. 44, No. 11, pp. 1568–1576.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kalyuzhnyy, N.A., Gudovskikh, A.S., Evstropov, V.V. et al. Germanium subcells for multijunction GaInP/GaInAs/Ge solar cells. Semiconductors 44, 1520–1528 (2010).

Download citation


  • Versus Characteristic
  • Junction Solar Cell
  • Concentrate Solar Radiation
  • Photovoltaic Converter
  • Excess Component