Advertisement

Semiconductors

, Volume 40, Issue 12, pp 1429–1431 | Cite as

The effect of a quantizing electric field on the transverse mobility of electrons in a superlattice

  • D. V. Zav’yalov
  • S. V. Kryuchkov
  • N. E. Meshcheryakova
Low-Dimensional Systems
  • 28 Downloads

Abstract

The effect of a quantizing static electric field parallel to the axis of a semiconductor superstructure on the charge-carrier mobility in the direction perpendicular to this axis is studied. The transverse conductivity of charge carriers was calculated on the basis of a quantum-mechanical kinetic equation. Using the results of the numerical analysis, the dependences of the time of the carriers’ momentum relaxation on their transverse energy and also the dependences of the charge-carrier mobility on the strength of the longitudinal quantizing electric field were plotted. It is shown that the dependence of the density of current flowing perpendicularly to the superlattice axis on the strength of the longitudinal electric field is oscillatory.

PACS numbers

72.20.Ht 73.21.Cd 73.40.Kp 73.63.-b 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. V. Bryksin and Yu. A. Firsov, Zh. Éksp. Teor. Fiz. 61, 2373 (1971) [Sov. Phys. JETP 34, 1272 (1972)].Google Scholar
  2. 2.
    V. V. Bryxin and Yu. A. Firsov, Solid State Commun. 10, 471 (1972).CrossRefGoogle Scholar
  3. 3.
    V. V. Bryksin, Fiz. Tverd. Tela (Leningrad) 14, 802 (1972) [Sov. Phys. Solid State 14, 684 (1972)].Google Scholar
  4. 4.
    V. V. Pavlovich and É. M. Épshteĭn, Fiz. Tverd. Tela (Leningrad) 18, 1483 (1976) [Sov. Phys. Solid State 18, 863 (1976)].Google Scholar
  5. 5.
    V. V. Pavlovich and É. M. Épshteĭn, Fiz. Tekh. Poluprovodn. (Leningrad) 10, 2001 (1976) [Sov. Phys. Semicond. 10, 1196 (1976)].Google Scholar
  6. 6.
    A. A. Ignatov and Yu. A. Romanov, Phys. Status Solidi B 73, 327 (1976).Google Scholar
  7. 7.
    A. A. Ignatov and Yu. A. Romanov, Izv. Vyssh. Uchebn. Zaved., Radiofiz. 21(1), 132 (1978).Google Scholar
  8. 8.
    D. V. Zav’yalov, S. V. Kryuchkov, and N. E. Meshcheryakova, Fiz. Tekh. Poluprovodn. (St. Petersburg) 39, 214 (2005) [Semiconductors 39, 198 (2005)].Google Scholar
  9. 9.
    S. A. Ktitorov, G. S. Simin, and V. Ya. Sindalovskiĭ, Fiz. Tverd. Tela (Leningrad) 18, 1140 (1976) [Sov. Phys. Solid State 18, 654 (1976)].Google Scholar
  10. 10.
    R. A. Suris, in Future Tends in Microelectronics (Kluwer Academic, Dordrecht, 1996), p. 197.Google Scholar
  11. 11.
    D. V. Zav’yalov, S. V. Kryuchkov, and E. I. Kukhar’, Pis’ma Zh. Tekh. Fiz. 31(17), 7 (2005) [Tech. Phys. Lett. 31, 722 (2005)].Google Scholar
  12. 12.
    A. I. Akhiezer and S. V. Peletminskiĭ, Methods of Statistical Physics (Nauka, Moscow, 1977; Pergamon, Oxford, 1981).Google Scholar
  13. 13.
    I. B. Levinson and Ya. Yasevichyute, Zh. Éksp. Teor. Fiz. 62, 1902 (1982) [Sov. Phys. JETP 35, 991 (1982)].Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2006

Authors and Affiliations

  • D. V. Zav’yalov
    • 1
  • S. V. Kryuchkov
    • 1
  • N. E. Meshcheryakova
    • 1
  1. 1.Volgograd State Pedagogical UniversityVolgogradRussia

Personalised recommendations